No Access Submitted: 19 October 2018 Accepted: 12 February 2019 Published Online: 04 March 2019
Physics of Plasmas 26, 032703 (2019); https://doi.org/10.1063/1.5070103
The coupling and evolution of two-mode ablative Rayleigh-Taylor instability (ARTI) in two-dimensional geometry are studied via numerical simulations. We focus primarily on two scenarios: Coupling and bubble competition of a long and a short wavelength mode and of two short-wavelength modes. It is found that the long-wavelength modes tend to dominate in the nonlinear phase of the long-short coupling cases. The presence of the short-wavelength mode in the long-short cases enhances the total ARTI bubble vertex velocity. However, due to the formation of enclosed bubbles, this enhancement does not increase monotonically with the initial short-wavelength amplitude. Coupling of two short-wavelength modes forms a long-wavelength component which grows faster than each individual short-wavelength mode.
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11772324, 11621202, and U1730124, by the Science Challenge Project No. TZ2016001, by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), by the Fundamental Research Funds for the Central Universities, and by the DOE Office of Fusion Energy Sciences Grant No. DE-SC0014318.
  1. 1. L. Rayleigh, Scientific Papers II ( Cambridge University Press, Cambridge, England, 1900), p. 200. Google Scholar
  2. 2. S. Atzeni and J. M. ter Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Matter ( Oxford University, 2004). Google ScholarCrossref
  3. 3. E. L. Blanton, T. E. Clarke, C. L. Sarazin, S. W. Randall, and B. R. McNamara, Proc. Natl. Acad. Sci. U.S.A. 107, 7174 (2010). https://doi.org/10.1073/pnas.0913904107, Google ScholarCrossref
  4. 4. A. Burrows, Nature 403, 727 (2000). https://doi.org/10.1038/35001501, Google ScholarCrossref
  5. 5. V. N. Gamezo, A. M. Khokhlov, E. S. Oran, A. Y. Chtchelkanova, and R. O. Rosenberg, Science 299, 77 (2003). https://doi.org/10.1126/science.1078129, Google ScholarCrossref
  6. 6. E. P. Hicks, Astrophys. J. 803, 72 (2015). https://doi.org/10.1088/0004-637X/803/2/72, Google ScholarCrossref
  7. 7. J. D. Lindl, Inertial Confinement Fusion ( Springer, New York, 1998). Google Scholar
  8. 8. J. Sanz, Phys. Rev. Lett. 73, 2700 (1994). https://doi.org/10.1103/PhysRevLett.73.2700, Google ScholarCrossref
  9. 9. R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, and C. P. Verdon, Phys. Plasmas 3, 2122 (1996). https://doi.org/10.1063/1.871664, Google ScholarScitation, ISI
  10. 10. R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, Phys. Plasmas 5, 1446 (1998). https://doi.org/10.1063/1.872802, Google ScholarScitation, ISI
  11. 11. H. Takabe, K. Mima, L. Montierth, and R. Morse, Phys. Fluids (1958-1988) 28, 3676 (1985). https://doi.org/10.1063/1.865099, Google ScholarScitation, ISI
  12. 12. V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002). https://doi.org/10.1103/PhysRevLett.88.134502, Google ScholarCrossref
  13. 13. R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006). https://doi.org/10.1103/PhysRevLett.97.205002, Google ScholarCrossref
  14. 14. R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, Phys. Plasmas 23, 022701 (2016). https://doi.org/10.1063/1.4940917, Google ScholarScitation, ISI
  15. 15. J. Sanz, R. Betti, R. Ramis, and J. Ramírez, Plasma Phys. Controlled Fusion 46, B367 (2004). https://doi.org/10.1088/0741-3335/46/12B/032, Google ScholarCrossref
  16. 16. H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, Phys. Rev. E 97, 011203 (2018). https://doi.org/10.1103/PhysRevE.97.011203, Google ScholarCrossref
  17. 17. D. Ofer, D. Shvarts, Z. Zinamon, and S. A. Orszag, Phys. Fluids B: Plasma Phys. 4, 3549 (1992). https://doi.org/10.1063/1.860362, Google ScholarScitation, ISI
  18. 18. D. Shvarts, U. Alon, D. Ofer, R. L. McCrory, and C. P. Verdon, Phys. Plasmas 2, 2465 (1995). https://doi.org/10.1063/1.871476, Google ScholarScitation, ISI
  19. 19. G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu et al., Phys. Fluids 16, 1668 (2004). https://doi.org/10.1063/1.1688328, Google ScholarScitation, ISI
  20. 20. P. Ramaprabhu, G. Dimonte, and M. J. Andrews, J. Fluid Mech. 536, 285 (2005). https://doi.org/10.1017/S002211200500488X, Google ScholarCrossref
  21. 21. U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. 74, 534 (1995). https://doi.org/10.1103/PhysRevLett.74.534, Google ScholarCrossref
  22. 22. H. Zhang, R. Betti, D. Zhao, R. Yan, D. Shvarts, and H. Aluie, Phys. Rev. Lett. 121, 185002 (2018). https://doi.org/10.1103/PhysRevLett.121.185002, Google ScholarCrossref
  23. 23. L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953). https://doi.org/10.1103/PhysRev.89.977, Google ScholarCrossref
  24. 24. Y. Zhou, Phys. Rep. 720–722, 1–136 (2017). https://doi.org/10.1016/j.physrep.2017.07.005, Google ScholarCrossref
  25. 25. Y. Zhou, Phys. Rep. 723–725, 1–160 (2017). https://doi.org/10.1016/j.physrep.2017.07.008, Google ScholarCrossref
  26. 26. A. Casner et al., Nucl. Fusion 59, 032002 (2019). https://doi.org/10.1088/1741-4326/aae598, Google ScholarCrossref
  27. 27. C. C. Kuranz et al., Nat. Commun. 9, 1564 (2018). https://doi.org/10.1038/s41467-018-03548-7, Google ScholarCrossref
  28. 28. C. M. Huntington et al., Phys. Plasmas 25, 052118 (2018). https://doi.org/10.1063/1.5022179, Google ScholarScitation, ISI
  1. © 2019 Author(s). Published under license by AIP Publishing.