No Access Submitted: 12 October 2018 Accepted: 21 December 2018 Published Online: 14 January 2019
Physics of Plasmas 26, 013105 (2019); https://doi.org/10.1063/1.5066109
A solid density target irradiated by a high-intensity laser pulse can become relativistically transparent, which then allows it to sustain an extremely strong laser-driven longitudinal electron current. The current generates a filament with a slowly varying MT-level azimuthal magnetic field that has been shown to prompt efficient emission of multi-MeV photons in the form of a collimated beam required for multiple applications. This work examines the feasibility of using an x-ray beam from the European x-ray free electron laser for the detection of the magnetic field via the Faraday rotation. Post-processed three dimensional particle-in-cell simulations show that, even though the relativistic transparency dramatically reduces the rotation in a uniform target, the detrimental effect can be successfully reversed by employing a structured target containing a channel to achieve a rotation angle of 10−4 rad. The channel must be relativistically transparent with an electron density that is lower than the near-solid density in the bulk. The detection setup has been optimized by varying the channel radius and focusing the laser pulse driving the magnetic field. We predict that the Faraday rotation can produce 103 photons with polarization orthogonal to the polarization of the incoming 100 fs long probe beam with 5 × 1012 x-ray photons. Based on the calculated rotation angle, the polarization purity must be much better than 10−8 in order to detect the signal above the noise level.
This research was supported by the Air Force Office of Scientific Research under Grant No. FA9550-17-1-0382 and the National Science Foundation under Grant No. 1632777. Particle-in-cell simulations were performed using EPOCH3737. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001 and developed under UK EPSRC Grant Nos. EP/G054940, EP/G055165, and EP/G056803. High performance computing resources were provided by the Texas Advanced Computing Center (TACC) at The University of Texas at Austin and by the Extreme Science and Engineering Discovery Environment (XSEDE) through allocation PHY180033. Data collaboration was supported by the SeedMe2 project3838. D. N. A. Chourasia and M. Norman, “Seedme: Data sharing building blocks,” in Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact (PEARC17) (2017), Vol. 69, p. 1. (http://dibbs.seedme.org).
  1. 1. K. Ruchala, G. Olivera, E. Schloesser, and T. Mackie, “Megavoltage CT on a tomotherapy system,” Phys. Med. Biol. 44(10), 2597 (1999). https://doi.org/10.1088/0031-9155/44/10/316, Google ScholarCrossref
  2. 2. W. Duncan and P. Quilty, “The results of a series of 963 patients with transitional cell carcinoma of the urinary bladder primarily treated by radical megavoltage X-ray therapy,” Radiother. Oncol. 7(4), 299–310 (1986). https://doi.org/10.1016/S0167-8140(86)80059-7, Google ScholarCrossref
  3. 3. E. Kwan, G. Rusev, A. S. Adekola, F. Dönau, S. L. Hammond, C. R. Howell, H. J. Karwowski, J. H. Kelley, R. S. Pedroni, R. Raut, A. P. Tonchev, and W. Tornow, “Discrete deexcitations in 235U below 3 MeV from nuclear resonance fluorescence,” Phys. Rev. C 83, 041601 (2011). https://doi.org/10.1103/PhysRevC.83.041601, Google ScholarCrossref
  4. 4. ANSI N42.41-2007, American National Standard Minimum Performance Criteria for Active Interrogation Systems Used for Homeland Security ( ANSI, 2008), pp. 1–35. Google Scholar
  5. 5. X. Ribeyre, E. d'Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016). https://doi.org/10.1103/PhysRevE.93.013201, Google ScholarCrossref
  6. 6. S. Chen, N. D. Powers, I. Ghebregziabher, C. M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, and D. P. Umstadter, “MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons,” Phys. Rev. Lett. 110, 155003 (2013). https://doi.org/10.1103/PhysRevLett.110.155003, Google ScholarCrossref
  7. 7. G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. D. Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. G. R. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801, Google ScholarCrossref
  8. 8. C. G. Geddes, S. Rykovanov, N. H. Matlis, S. Steinke, J.-L. Vay, E. H. Esarey, B. Ludewigt, K. Nakamura, B. J. Quiter, C. B. Schroeder et al., “Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization,” Nucl. Instrum. Methods Phys. Res. Sect. B 350, 116–121 (2015). https://doi.org/10.1016/j.nimb.2015.01.013, Google ScholarCrossref, ISI
  9. 9. L. Ji, A. Pukhov, E. Nerush, I. Y. Kostyukov, B. Shen, and K. Akli, “Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction,” Phys. Plasmas 21(2), 023109 (2014). https://doi.org/10.1063/1.4866014, Google ScholarScitation, ISI
  10. 10. S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, I. Andrei, S. Ataman, M. O. Cernaianu, L. DAlessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng, and N. V. Zamfir, “The extreme light infrastructure nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81(9), 094301 (2018). https://doi.org/10.1088/1361-6633/aacfe8, Google ScholarCrossref
  11. 11. D. Stark, T. Toncian, and A. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116(18), 185003 (2016). https://doi.org/10.1103/PhysRevLett.116.185003, Google ScholarCrossref
  12. 12. O. Jansen, T. Wang, D. J. Stark, E. dHumires, T. Toncian, and A. V. Arefiev, “Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production,” Plasma Phys. Controlled Fusion 60(5), 054006 (2018). https://doi.org/10.1088/1361-6587/aab222, Google ScholarCrossref
  13. 13. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker et al., “First lasing and operation of an Ångstrom-wavelength free-electron laser,” Nat. Photonics 4(9), 641 (2010). https://doi.org/10.1038/nphoton.2010.176, Google ScholarCrossref, ISI
  14. 14. C. Pellegrini, “X-ray free-electron lasers: From dreams to reality,” Phys. Scr. 2016(T169), 014004 (2017). https://doi.org/10.1088/1402-4896/aa5281, Google ScholarCrossref
  15. 15. See http://dx.doi.org/10.3204/XFEL.EU/TR-2011-001 for European XFEL parameters. Google Scholar
  16. 16. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa et al., “A compact x-ray free-electron laser emitting in the sub-Ångström region,” Nat. Photonics 6(8), 540 (2012). https://doi.org/10.1038/nphoton.2012.141, Google ScholarCrossref
  17. 17. See http://www.hibef.eu for HiBEF project information. Google Scholar
  18. 18. L. G. Huang, H.-P. Schlenvoigt, H. Takabe, and T. E. Cowan, “Ionization and reflux dependence of magnetic instability generation and probing inside laser-irradiated solid thin foils,” Phys. Plasmas 24(10), 103115 (2017). https://doi.org/10.1063/1.4989457, Google ScholarScitation, ISI
  19. 19. K. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo et al., “Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry,” Appl. Phys. Lett. 108(9), 091104 (2016). https://doi.org/10.1063/1.4943078, Google ScholarScitation, ISI
  20. 20. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani et al., “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17(8), 083051 (2015). https://doi.org/10.1088/1367-2630/17/8/083051, Google ScholarCrossref
  21. 21. W. Schumaker, N. Nakanii, C. McGuffey, C. Zulick, V. Chyvkov, F. Dollar, H. Habara, G. Kalintchenko, A. Maksimchuk, K. A. Tanaka, A. G. R. Thomas, V. Yanovsky, and K. Krushelnick, “Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions,” Phys. Rev. Lett. 110, 015003 (2013). https://doi.org/10.1103/PhysRevLett.110.015003, Google ScholarCrossref
  22. 22. J. Stamper and B. Ripin, “Faraday-rotation measurements of megagauss magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 34(3), 138 (1975). https://doi.org/10.1103/PhysRevLett.34.138, Google ScholarCrossref
  23. 23. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, A. Pukhov, and J. Meyer-ter Vehn, “Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma,” Phys. Rev. Lett. 80, 5137–5140 (1998). https://doi.org/10.1103/PhysRevLett.80.5137, Google ScholarCrossref
  24. 24. M. C. Kaluza, H.-P. Schlenvoigt, S. P. D. Mangles, A. G. R. Thomas, A. E. Dangor, H. Schwoerer, W. B. Mori, Z. Najmudin, and K. M. Krushelnick, “Measurement of magnetic-field structures in a laser-wakefield accelerator,” Phys. Rev. Lett. 105, 115002 (2010). https://doi.org/10.1103/PhysRevLett.105.115002, Google ScholarCrossref
  25. 25. B. Walton, A. Dangor, S. P. Mangles, Z. Najmudin, K. Krushelnick, A. G. R. Thomas, S. Fritzler, and V. Malka, “Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments,” New J. Phys. 15(2), 025034 (2013). https://doi.org/10.1088/1367-2630/15/2/025034, Google ScholarCrossref
  26. 26. C. Cecchetti, M. Borghesi, J. Fuchs, G. Schurtz, S. Kar, A. Macchi, L. Romagnani, P. Wilson, P. Antici, R. Jung et al., “Magnetic field measurements in laser-produced plasmas via proton deflectometry,” Phys. Plasmas 16(4), 043102 (2009). https://doi.org/10.1063/1.3097899, Google ScholarScitation, ISI
  27. 27. D. P. Siddons, M. Hart, Y. Amemiya, and J. B. Hastings, “X-ray optical activity and the Faraday effect in cobalt and its compounds,” Phys. Rev. Lett. 64, 1967–1970 (1990). https://doi.org/10.1103/PhysRevLett.64.1967, Google ScholarCrossref
  28. 28. L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014). https://doi.org/10.1103/PhysRevLett.112.145003, Google ScholarCrossref
  29. 29. B. Qiao, H. Chang, Y. Xie, Z. Xu, and X. He, “Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes,” Phys. Plasmas 24(12), 123101 (2017). https://doi.org/10.1063/1.5013019, Google ScholarScitation, ISI
  30. 30. R. V. Shcherbakov, “Propagation effects in magnetized transrelativistic plasmas,” Astrophys. J. 688(1), 695 (2008). https://doi.org/10.1086/592326, Google ScholarCrossref
  31. 31. L. Huang and R. V. Shcherbakov, “Faraday conversion and rotation in uniformly magnetized relativistic plasmas,” Mon. Not. R. Astron. Soc. 416(4), 2574–2592 (2011). https://doi.org/10.1111/j.1365-2966.2011.19207.x, Google ScholarCrossref
  32. 32. Y.-P. Li, F. Yuan, and F.-G. Xie, “Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations,” Astrophys. J. 830(2), 78 (2016). https://doi.org/10.3847/0004-637X/830/2/78, Google ScholarCrossref
  33. 33. B. Trubnikov, “Magnetic emission of high temperature plasma ,” PhD thesis, dissertation, Moscow (US-AEC Technical Information Service, AEC-tr-4073 [1960], 1958). Google Scholar
  34. 34. D. B. Melrose, “Covariant form of Trubnikov's response tensor for a relativistic magnetized thermal plasma,” J. Plasma Phys. 57(2), 479–488 (1997). https://doi.org/10.1017/S0022377896004989, Google ScholarCrossref
  35. 35. B. Marx, I. Uschmann, S. Hfer, R. Ltzsch, O. Wehrhan, E. Frster, M. Kaluza, T. Sthlker, H. Gies, C. Detlefs, T. Roth, J. Hrtwig, and G. Paulus, “Determination of high-purity polarization state of X-rays,” Opt. Commun. 284(4), 915–918 (2011). https://doi.org/10.1016/j.optcom.2010.10.054, Google ScholarCrossref
  36. 36. B. Marx, K. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig et al., “High-precision x-ray polarimetry,” Phys. Rev. Lett. 110(25), 254801 (2013). https://doi.org/10.1103/PhysRevLett.110.254801, Google ScholarCrossref
  37. 37. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001, Google ScholarCrossref
  38. 38. D. N. A. Chourasia and M. Norman, “Seedme: Data sharing building blocks,” in Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact (PEARC17) (2017), Vol. 69, p. 1. Google ScholarCrossref
  39. 39. F. Jüttner, “Das Maxwellsche Gesetz der geschwindigkeitsverteilung in der relativtheorie,” Ann. Phys. 339(5), 856–882 (1911). https://doi.org/10.1002/andp.19113390503, Google ScholarCrossref
  40. 40. L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics ( Oxford University Press, 2013). Google ScholarCrossref
  41. 41. S. Zenitani, “Loading relativistic Maxwell distributions in particle simulations,” Phys. Plasmas 22(4), 042116 (2015). https://doi.org/10.1063/1.4919383, Google ScholarScitation, ISI
  42. 42. H.-J. Hartfuß and T. Geist, Fusion Plasma Diagnostics with mm-Waves: An Introduction ( John Wiley & Sons, 2013). Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.