ABSTRACT
A solid density target irradiated by a high-intensity laser pulse can become relativistically transparent, which then allows it to sustain an extremely strong laser-driven longitudinal electron current. The current generates a filament with a slowly varying MT-level azimuthal magnetic field that has been shown to prompt efficient emission of multi-MeV photons in the form of a collimated beam required for multiple applications. This work examines the feasibility of using an x-ray beam from the European x-ray free electron laser for the detection of the magnetic field via the Faraday rotation. Post-processed three dimensional particle-in-cell simulations show that, even though the relativistic transparency dramatically reduces the rotation in a uniform target, the detrimental effect can be successfully reversed by employing a structured target containing a channel to achieve a rotation angle of 10−4 rad. The channel must be relativistically transparent with an electron density that is lower than the near-solid density in the bulk. The detection setup has been optimized by varying the channel radius and focusing the laser pulse driving the magnetic field. We predict that the Faraday rotation can produce 103 photons with polarization orthogonal to the polarization of the incoming 100 fs long probe beam with 5 × 1012 x-ray photons. Based on the calculated rotation angle, the polarization purity must be much better than 10−8 in order to detect the signal above the noise level.
ACKNOWLEDGMENTS
This research was supported by the Air Force Office of Scientific Research under Grant No. FA9550-17-1-0382 and the National Science Foundation under Grant No. 1632777. Particle-in-cell simulations were performed using EPOCH37 and developed under UK EPSRC Grant Nos. EP/G054940, EP/G055165, and EP/G056803. High performance computing resources were provided by the Texas Advanced Computing Center (TACC ) at The University of Texas at Austin and by the Extreme Science and Engineering Discovery Environment (XSEDE) through allocation PHY180033. Data collaboration was supported by the SeedMe2 project38 (http://dibbs.seedme.org).
REFERENCES
- 1. K. Ruchala, G. Olivera, E. Schloesser, and T. Mackie, “Megavoltage CT on a tomotherapy system,” Phys. Med. Biol. 44(10), 2597 (1999). https://doi.org/10.1088/0031-9155/44/10/316, Google ScholarCrossref
- 2. W. Duncan and P. Quilty, “The results of a series of 963 patients with transitional cell carcinoma of the urinary bladder primarily treated by radical megavoltage X-ray therapy,” Radiother. Oncol. 7(4), 299–310 (1986). https://doi.org/10.1016/S0167-8140(86)80059-7, Google ScholarCrossref
- 3. E. Kwan, G. Rusev, A. S. Adekola, F. Dönau, S. L. Hammond, C. R. Howell, H. J. Karwowski, J. H. Kelley, R. S. Pedroni, R. Raut, A. P. Tonchev, and W. Tornow, “Discrete deexcitations in 235U below 3 MeV from nuclear resonance fluorescence,” Phys. Rev. C 83, 041601 (2011). https://doi.org/10.1103/PhysRevC.83.041601, Google ScholarCrossref
- 4. ANSI N42.41-2007, American National Standard Minimum Performance Criteria for Active Interrogation Systems Used for Homeland Security ( ANSI, 2008), pp. 1–35. Google Scholar
- 5. X. Ribeyre, E. d'Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016). https://doi.org/10.1103/PhysRevE.93.013201, Google ScholarCrossref
- 6. S. Chen, N. D. Powers, I. Ghebregziabher, C. M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, and D. P. Umstadter, “MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons,” Phys. Rev. Lett. 110, 155003 (2013). https://doi.org/10.1103/PhysRevLett.110.155003, Google ScholarCrossref
- 7. G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. D. Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. G. R. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801, Google ScholarCrossref
- 8. C. G. Geddes, S. Rykovanov, N. H. Matlis, S. Steinke, J.-L. Vay, E. H. Esarey, B. Ludewigt, K. Nakamura, B. J. Quiter, C. B. Schroeder et al., “Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization,” Nucl. Instrum. Methods Phys. Res. Sect. B 350, 116–121 (2015). https://doi.org/10.1016/j.nimb.2015.01.013, Google ScholarCrossref, ISI
- 9. L. Ji, A. Pukhov, E. Nerush, I. Y. Kostyukov, B. Shen, and K. Akli, “Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction,” Phys. Plasmas 21(2), 023109 (2014). https://doi.org/10.1063/1.4866014, Google ScholarScitation, ISI
- 10. S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, I. Andrei, S. Ataman, M. O. Cernaianu, L. DAlessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng, and N. V. Zamfir, “The extreme light infrastructure nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81(9), 094301 (2018). https://doi.org/10.1088/1361-6633/aacfe8, Google ScholarCrossref
- 11. D. Stark, T. Toncian, and A. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116(18), 185003 (2016). https://doi.org/10.1103/PhysRevLett.116.185003, Google ScholarCrossref
- 12. O. Jansen, T. Wang, D. J. Stark, E. dHumires, T. Toncian, and A. V. Arefiev, “Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production,” Plasma Phys. Controlled Fusion 60(5), 054006 (2018). https://doi.org/10.1088/1361-6587/aab222, Google ScholarCrossref
- 13. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker et al., “First lasing and operation of an Ångstrom-wavelength free-electron laser,” Nat. Photonics 4(9), 641 (2010). https://doi.org/10.1038/nphoton.2010.176, Google ScholarCrossref, ISI
- 14. C. Pellegrini, “X-ray free-electron lasers: From dreams to reality,” Phys. Scr. 2016(T169), 014004 (2017). https://doi.org/10.1088/1402-4896/aa5281, Google ScholarCrossref
- 15. See http://dx.doi.org/10.3204/XFEL.EU/TR-2011-001 for European XFEL parameters. Google Scholar
- 16. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa et al., “A compact x-ray free-electron laser emitting in the sub-Ångström region,” Nat. Photonics 6(8), 540 (2012). https://doi.org/10.1038/nphoton.2012.141, Google ScholarCrossref
- 17. See http://www.hibef.eu for HiBEF project information. Google Scholar
- 18. L. G. Huang, H.-P. Schlenvoigt, H. Takabe, and T. E. Cowan, “Ionization and reflux dependence of magnetic instability generation and probing inside laser-irradiated solid thin foils,” Phys. Plasmas 24(10), 103115 (2017). https://doi.org/10.1063/1.4989457, Google ScholarScitation, ISI
- 19. K. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo et al., “Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry,” Appl. Phys. Lett. 108(9), 091104 (2016). https://doi.org/10.1063/1.4943078, Google ScholarScitation, ISI
- 20. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani et al., “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17(8), 083051 (2015). https://doi.org/10.1088/1367-2630/17/8/083051, Google ScholarCrossref
- 21. W. Schumaker, N. Nakanii, C. McGuffey, C. Zulick, V. Chyvkov, F. Dollar, H. Habara, G. Kalintchenko, A. Maksimchuk, K. A. Tanaka, A. G. R. Thomas, V. Yanovsky, and K. Krushelnick, “Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions,” Phys. Rev. Lett. 110, 015003 (2013). https://doi.org/10.1103/PhysRevLett.110.015003, Google ScholarCrossref
- 22. J. Stamper and B. Ripin, “Faraday-rotation measurements of megagauss magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 34(3), 138 (1975). https://doi.org/10.1103/PhysRevLett.34.138, Google ScholarCrossref
- 23. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, A. Pukhov, and J. Meyer-ter Vehn, “Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma,” Phys. Rev. Lett. 80, 5137–5140 (1998). https://doi.org/10.1103/PhysRevLett.80.5137, Google ScholarCrossref
- 24. M. C. Kaluza, H.-P. Schlenvoigt, S. P. D. Mangles, A. G. R. Thomas, A. E. Dangor, H. Schwoerer, W. B. Mori, Z. Najmudin, and K. M. Krushelnick, “Measurement of magnetic-field structures in a laser-wakefield accelerator,” Phys. Rev. Lett. 105, 115002 (2010). https://doi.org/10.1103/PhysRevLett.105.115002, Google ScholarCrossref
- 25. B. Walton, A. Dangor, S. P. Mangles, Z. Najmudin, K. Krushelnick, A. G. R. Thomas, S. Fritzler, and V. Malka, “Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments,” New J. Phys. 15(2), 025034 (2013). https://doi.org/10.1088/1367-2630/15/2/025034, Google ScholarCrossref
- 26. C. Cecchetti, M. Borghesi, J. Fuchs, G. Schurtz, S. Kar, A. Macchi, L. Romagnani, P. Wilson, P. Antici, R. Jung et al., “Magnetic field measurements in laser-produced plasmas via proton deflectometry,” Phys. Plasmas 16(4), 043102 (2009). https://doi.org/10.1063/1.3097899, Google ScholarScitation, ISI
- 27. D. P. Siddons, M. Hart, Y. Amemiya, and J. B. Hastings, “X-ray optical activity and the Faraday effect in cobalt and its compounds,” Phys. Rev. Lett. 64, 1967–1970 (1990). https://doi.org/10.1103/PhysRevLett.64.1967, Google ScholarCrossref
- 28. L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014). https://doi.org/10.1103/PhysRevLett.112.145003, Google ScholarCrossref
- 29. B. Qiao, H. Chang, Y. Xie, Z. Xu, and X. He, “Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes,” Phys. Plasmas 24(12), 123101 (2017). https://doi.org/10.1063/1.5013019, Google ScholarScitation, ISI
- 30. R. V. Shcherbakov, “Propagation effects in magnetized transrelativistic plasmas,” Astrophys. J. 688(1), 695 (2008). https://doi.org/10.1086/592326, Google ScholarCrossref
- 31. L. Huang and R. V. Shcherbakov, “Faraday conversion and rotation in uniformly magnetized relativistic plasmas,” Mon. Not. R. Astron. Soc. 416(4), 2574–2592 (2011). https://doi.org/10.1111/j.1365-2966.2011.19207.x, Google ScholarCrossref
- 32. Y.-P. Li, F. Yuan, and F.-G. Xie, “Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations,” Astrophys. J. 830(2), 78 (2016). https://doi.org/10.3847/0004-637X/830/2/78, Google ScholarCrossref
- 33. B. Trubnikov, “Magnetic emission of high temperature plasma ,” PhD thesis, dissertation, Moscow (US-AEC Technical Information Service, AEC-tr-4073 [1960], 1958). Google Scholar
- 34. D. B. Melrose, “Covariant form of Trubnikov's response tensor for a relativistic magnetized thermal plasma,” J. Plasma Phys. 57(2), 479–488 (1997). https://doi.org/10.1017/S0022377896004989, Google ScholarCrossref
- 35. B. Marx, I. Uschmann, S. Hfer, R. Ltzsch, O. Wehrhan, E. Frster, M. Kaluza, T. Sthlker, H. Gies, C. Detlefs, T. Roth, J. Hrtwig, and G. Paulus, “Determination of high-purity polarization state of X-rays,” Opt. Commun. 284(4), 915–918 (2011). https://doi.org/10.1016/j.optcom.2010.10.054, Google ScholarCrossref
- 36. B. Marx, K. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig et al., “High-precision x-ray polarimetry,” Phys. Rev. Lett. 110(25), 254801 (2013). https://doi.org/10.1103/PhysRevLett.110.254801, Google ScholarCrossref
- 37. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001, Google ScholarCrossref
- 38. D. N. A. Chourasia and M. Norman, “Seedme: Data sharing building blocks,” in Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact (PEARC17) (2017), Vol. 69, p. 1. Google ScholarCrossref
- 39. F. Jüttner, “Das Maxwellsche Gesetz der geschwindigkeitsverteilung in der relativtheorie,” Ann. Phys. 339(5), 856–882 (1911). https://doi.org/10.1002/andp.19113390503, Google ScholarCrossref
- 40. L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics ( Oxford University Press, 2013). Google ScholarCrossref
- 41. S. Zenitani, “Loading relativistic Maxwell distributions in particle simulations,” Phys. Plasmas 22(4), 042116 (2015). https://doi.org/10.1063/1.4919383, Google ScholarScitation, ISI
- 42. H.-J. Hartfuß and T. Geist, Fusion Plasma Diagnostics with mm-Waves: An Introduction ( John Wiley & Sons, 2013). Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.


