ABSTRACT
We study how nonlinear delayed-feedback in the Ikeda model can induce solitary impulses, i.e., dissipative solitons. The states are clearly identified in a virtual space-time representation of the equations with delay, and we find that conditions for their appearance are bistability of a nonlinear function and negative character of the delayed feedback. Both dark and bright solitons are identified in numerical simulations and physical electronic experiment, showing an excellent qualitative correspondence and proving thereby the robustness of the phenomenon. Along with single spiking solitons, a variety of compound soliton-based structures is obtained in a wide parameter region on the route from the regular dynamics (two quiescent states) to developed spatiotemporal chaos. The number of coexisting soliton-based states is fast growing with delay, which can open new perspectives in the context of information storage.
ACKNOWLEDGMENTS
This work was supported by Russian Ministry of Education and Science (Project Code 3.8616.2017/8.9). We are grateful to Laurent Larger, Arkady Pikovsky, and Serhiy Yanchuk for illuminating discussions. We also acknowledge support and hospitality of Institute FEMTO-ST of Besancon, Technical University of Berlin, and University of Potsdam.
- 1. S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 (1990). https://doi.org/10.1103/PhysRevLett.64.282, Google ScholarCrossref
- 2. B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Springer, 1994). Google ScholarCrossref
- 3. C. I. Christov and M. G. Velarde, Physica D 86, 323 (1995). https://doi.org/10.1016/0167-2789(95)00111-G, Google ScholarCrossref
- 4. F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, Phys. Rev. Lett. 115, 043902 (2015). https://doi.org/10.1103/PhysRevLett.115.043902, Google ScholarCrossref
- 5. Dissipative Solitons: From Optics to Biology and Medicine, edited by N. Akhmediev and A. Ankiewicz (Springer, 2008). Google Scholar
- 6. H. G. Purwins, H. U. Bödeker, and S. Amiranashvili, Adv. Phys. 59, 485 (2010). https://doi.org/10.1080/00018732.2010.498228, Google ScholarCrossref, ISI
- 7. A. W. Liehr, Dissipative Solitons in Reaction Diffusion Systems (Springer, 2013). Google ScholarCrossref
- 8. Soliton-driven Photonics, edited by A. D. Boardman and A. P. Sukhorukov (Springer, 2001). Google Scholar
- 9. F. Haudin, R. Rojas, U. Bortolozzo, S. Residori, and M. Clerc, Phys. Rev. Lett. 107, 264101 (2011). https://doi.org/10.1103/PhysRevLett.107.264101, Google ScholarCrossref
- 10. P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012). https://doi.org/10.1038/nphoton.2011.345, Google ScholarCrossref
- 11. N. Verschueren, U. Bortolozzo, M. Clerc, and S. Residori, Phys. Rev. Lett. 110, 104101 (2013). https://doi.org/10.1103/PhysRevLett.110.104101, Google ScholarCrossref
- 12. B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, Nat. Commun. 6, 5915 (2015). https://doi.org/10.1038/ncomms6915, Google ScholarCrossref
- 13. M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, Nat. Photonics 9, 450 (2015). https://doi.org/10.1038/nphoton.2015.92, Google ScholarCrossref, ISI
- 14. J. Javaloyes, M. Marconi, and M. Giudici, Phys. Rev. Lett. 119, 033904 (2017). https://doi.org/10.1103/PhysRevLett.119.033904, Google ScholarCrossref, ISI
- 15. C. H. Wong and Y. Tserkovnyak, Phys. Rev. B 81, 060404 (2010). https://doi.org/10.1103/PhysRevB.81.060404, Google ScholarCrossref
- 16. S. V. Grishin, E. N. Beginin, M. A. Morozova, Y. P. Sharaevskii, and S. A. Nikitov, J. Appl. Phys. 115, 053908 (2014). https://doi.org/10.1063/1.4864133, Google ScholarScitation, ISI
- 17. A. V. Tur, A. V. Chechkin, and V. V. Yanovsky, Phys. Fluids B 4, 3513 (1992). https://doi.org/10.1063/1.860359, Google ScholarScitation, ISI
- 18. S. Ghost, A. Adak, and M. Khan, Phys. Plasmas 21, 012303 (2014). https://doi.org/10.1063/1.4862033, Google ScholarScitation
- 19. S. Sultana and I. Kourakis, Phys. Plasmas 22, 102302 (2015). https://doi.org/10.1063/1.4932071, Google ScholarScitation, ISI
- 20. B. Lautrup, R. Appali, A. D. Jackson, and T. Heimburg, Eur. Phys. J. E 34, 57 (2011). https://doi.org/10.1140/epje/i2011-11057-0, Google ScholarCrossref
- 21. N. Akhmediev, J. M. Soto-Crespo, and H. R. Brand, Phys. Lett. A 377, 968 (2013). https://doi.org/10.1016/j.physleta.2013.02.015, Google ScholarCrossref
- 22. S. Kai and H. Miike, Physica A 204, 346 (1994). https://doi.org/10.1016/0378-4371(94)90436-7, Google ScholarCrossref
- 23. S. Kai, T. Ariyoshi, S. Inenaga, and H. Miike, Physica D 84, 269 (1995). https://doi.org/10.1016/0167-2789(95)00023-W, Google ScholarCrossref
- 24. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon Press, 1995). Google Scholar
- 25. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson et al., Nature 546, 274 (2017). https://doi.org/10.1038/nature22387, Google ScholarCrossref
- 26. Collision-Based Computing, edited by A. Adamatzky (Springer, 2002). Google Scholar
- 27. L. Larger, M. Soriano, D. Brunner, L. Appeltant, J. Gutierrez, L. Pesquera, C. Mirasso, and I. Fisher, Opt. Express 20, 3241 (2012). https://doi.org/10.1364/oe.20.003241, Google ScholarCrossref
- 28. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, Sci. Rep. 2, 287 (2012). https://doi.org/10.1038/srep00287, Google ScholarCrossref
- 29. F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, Phys. Rev. A 45, R4225 (1992). https://doi.org/10.1103/PhysRevA.45.R4225, Google ScholarCrossref, ISI
- 30. G. Giacomelli and A. Politi, Phys. Rev. Lett. 76, 2686 (1996). https://doi.org/10.1103/PhysRevLett.76.2686, Google ScholarCrossref, ISI
- 31. R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger, Phys. Rev. Lett. 108, 244101 (2012). https://doi.org/10.1103/PhysRevLett.108.244101, Google ScholarCrossref, ISI
- 32. L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and M. Jacquot, Phys. Rev. X 7, 011015 (2017). https://doi.org/10.1103/PhysRevX.7.011015, Google ScholarCrossref
- 33. B. Romeira, R. Avó, J. M. L. Figueiredo, S. Barland, and J. Javaloyes, Sci. Rep. 6, 19510 (2016). https://doi.org/10.1038/srep19510, Google ScholarCrossref
- 34. S. Yanchuk and G. Giacomelli, J. Phys. A 50, 103001 (2017). https://doi.org/10.1088/1751-8121/50/10/103001, Google ScholarCrossref
- 35. D. Brunner, B. Penkovsky, R. Levchenko, E. Schöll, L. Larger, and Y. Maistrenko, Chaos 28, 103106 (2018). https://doi.org/10.1063/1.5043391, Google ScholarScitation
- 36. A. Vladimirov and D. Turaev, Phys. Rev. A 72, 033808 (2005). https://doi.org/10.1103/PhysRevA.72.033808, Google ScholarCrossref, ISI
- 37. M. Nizette, D. Rachinskii, A. Vladimirov, and M. Wolfrum, Physica D 218, 95 (2006). https://doi.org/10.1016/j.physd.2006.04.013, Google ScholarCrossref
- 38. D. Puzyrev, A. Vladimirov, S. Gurevich, and S. Yanchuk, Phys. Rev. A 93, 041801 (2016). https://doi.org/10.1103/PhysRevA.93.041801, Google ScholarCrossref
- 39. L. Larger, B. Penkovsky, and Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013). https://doi.org/10.1103/PhysRevLett.111.054103, Google ScholarCrossref, ISI
- 40. L. Larger, B. Penkovsky, and Y. Maistrenko, Nat. Commun. 6, 7752 (2015). https://doi.org/10.1038/ncomms8752, Google ScholarCrossref, ISI
- 41. G. Giacomelli, F. Marino, M. A. Zaks, and S. Yanchuk, Europhys. Lett. 99, 58005 (2012). https://doi.org/10.1209/0295-5075/99/58005, Google ScholarCrossref
- 42. R. Manella, Int. J. Mod. Phys. C 13, 1177 (2002). https://doi.org/10.1142/S0129183102004042, Google ScholarCrossref
- 43. V. Semenov, A. Zakharova, Y. Maistrenko, and E. Schöll, Europhys. Lett. 115, 10005 (2016). https://doi.org/10.1209/0295-5075/115/10005, Google ScholarCrossref
- 44. V. V. Semenov, Chaos Solitons Fractals 116, 358 (2018). https://doi.org/10.1016/j.chaos.2018.09.045, Google ScholarCrossref
- 45. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003). Google Scholar
- 46. D. Luchinsky, P. V. E. McClintock, and M. Dykman, Rep. Prog. Phys. 61, 889 (1998). https://doi.org/10.1088/0034-4885/61/8/001, Google ScholarCrossref
- 47. F. Marino, G. Giacomelli, and S. Barland, Phys. Rev. Lett. 112, 103901 (2014). https://doi.org/10.1103/PhysRevLett.112.103901, Google ScholarCrossref, ISI
- 48. F. Marino, G. Giacomelli, and S. Barland, Phys. Rev. E 95, 052204 (2017). https://doi.org/10.1103/PhysRevE.95.052204, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.