No Access Submitted: 03 September 2018 Accepted: 09 October 2018 Published Online: 29 October 2018
J. Chem. Phys. 149, 164503 (2018); https://doi.org/10.1063/1.5054786
The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [C2C1im]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature. Molecular simulations predicted that the addition of water to the [C2C1im][TFSI]:[C2C1im][OAc] and [C2C1im][TFSI]:[C2C1im][Cl] mixtures would induce a liquid-liquid phase separation and that water addition to the [C2C1im][OAc]:[C2C1im][Cl] mixture would not produce a phase separation. The effect of water on the phase behavior of the IL mixtures was verified experimentally, and the IL and water concentrations were determined in each phase. Of particular importance is the analytical methodology used to determine the species’ concentration, where 1H NMR and a combination of 19F NMR, Karl Fischer titration, and ion chromatography techniques were applied.
We acknowledge Dr. David Minnick for providing directions on the mixture content analysis, Dr. Justin T. Douglas and Sarah Neuenswander for their assistance in running NMR samples, and Rasha Faraj for performing the ion chromatography analysis. Y.Z. and E.J.M. acknowledge the support by the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research under Contract No. DE-AC0206CH11357 and the Air Force Office of Scientific Research under Contract No. AFOSR FA9550-18-1-0321. Computational resources were provided by the Center for Research Computing (CRC) at the University of Notre Dame.
  1. 1. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, 2nd ed. (Wiley-VCH, 2008). Google Scholar
  2. 2. H. Niedermeyer, J. P. Hallett, I. J. Villar-Garcia, P. A. Hunt, and T. Welton, Chem. Soc. Rev. 41, 7780 (2012). https://doi.org/10.1039/c2cs35177c, Google ScholarCrossref, ISI
  3. 3. M. T. Clough, C. R. Crick, J. Gräsvik, P. A. Hunt, H. Niedermeyer, T. Welton, and O. P. Whitaker, Chem. Sci. 6, 1101 (2015). https://doi.org/10.1039/c4sc02931c, Google ScholarCrossref
  4. 4. C. P. Cabry, L. D’Andrea, K. Shimizu, I. Grillo, P. Li, S. E. Rogers, D. W. Bruce, J. N. C. Lopes, and J. M. Slattery, Faraday Discuss. 206, 265 (2017). https://doi.org/10.1039/c7fd00167c, Google ScholarCrossref
  5. 5. J. M. Andanson, M. J. Beier, and A. Baiker, J. Phys. Chem. Lett. 2, 2959 (2011). https://doi.org/10.1021/jz201323a, Google ScholarCrossref
  6. 6. R. P. Matthews, I. J. Villar-Garcia, C. C. Weber, J. Griffith, F. Cameron, J. P. Hallett, P. A. Hunt, and T. Welton, Phys. Chem. Chem. Phys. 18, 8608 (2016). https://doi.org/10.1039/c6cp00156d, Google ScholarCrossref
  7. 7. A. Arce, M. J. Earle, S. P. Katdare, H. Rodríguez, and K. R. Seddon, Chem. Commun. 2, 2548 (2006). https://doi.org/10.1039/b604595b, Google ScholarCrossref
  8. 8. C. M. S. S. Neves, A. M. S. Silva, A. M. Fernandes, J. A. P. Coutinho, and M. G. Freire, J. Phys. Chem. Lett. 8, 3015 (2017). https://doi.org/10.1021/acs.jpclett.7b01234, Google ScholarCrossref
  9. 9. M. C. Castro, A. Arce, A. Soto, and H. Rodríguez, J. Chem. Thermodyn. 102, 12 (2016). https://doi.org/10.1016/j.jct.2016.05.023, Google ScholarCrossref
  10. 10. K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc. 125, 6632 (2003). https://doi.org/10.1021/ja0351802, Google ScholarCrossref
  11. 11. M. G. Freire, A. F. M. Cláudio, J. M. M. Araújo, J. A. P. Coutinho, I. M. Marrucho, J. N. C. Lopes, and L. P. N. Rebelo, Chem. Soc. Rev. 41, 4966 (2012). https://doi.org/10.1039/c2cs35151j, Google ScholarCrossref
  12. 12. S. Y. Lee, I. Khoiroh, C. W. Ooi, T. C. Ling, and P. L. Show, Sep. Purif. Rev. 46, 291 (2017). https://doi.org/10.1080/15422119.2017.1279628, Google ScholarCrossref
  13. 13. A. Dimitrijevic, T. Trtić-Petrović, M. Vraneš, S. Papović, A. Tot, S. Dožić, and S. Gadžuric, J. Chem. Eng. Data 61, 549 (2016). https://doi.org/10.1021/acs.jced.5b00697, Google ScholarCrossref
  14. 14. Y. Kohno and H. Ohno, Phys. Chem. Chem. Phys. 14, 5063 (2012). https://doi.org/10.1039/c2cp24026b, Google ScholarCrossref
  15. 15. K. A. Le, R. Sescousse, and T. Budtova, Cellulose 19, 45 (2012). https://doi.org/10.1007/s10570-011-9610-3, Google ScholarCrossref
  16. 16. S. V. Troshenkova, E. S. Sashina, N. P. Novoselov, and K.-F. Arndt, Russ. J. Gen. Chem. 80, 501 (2010). https://doi.org/10.1134/s1070363210030229, Google ScholarCrossref
  17. 17. A. Arce, O. Rodríguez, and A. Soto, Chem. Eng. Sci. 61, 6929 (2006). https://doi.org/10.1016/j.ces.2006.07.014, Google ScholarCrossref
  18. 18. T. J. Henderson, Anal. Chem. 74, 191 (2002). https://doi.org/10.1021/ac010809+, Google ScholarCrossref
  19. 19. C. S. Lovell, A. Walker, R. A. Damion, A. Radhi, S. F. Tanner, T. Budtova, and M. E. Ries, Biomacromolecules 11, 2927 (2010). https://doi.org/10.1021/bm1006807, Google ScholarCrossref
  20. 20. A. Bondi, J. Phys. Chem. 68, 441 (1964). https://doi.org/10.1021/j100785a001, Google ScholarCrossref, ISI
  21. 21. T. Jiang, M. J. Chollier Brym, G. Dubé, A. Lasia, and G. M. Brisard, Surf. Coat. Technol. 201, 1 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.046, Google ScholarCrossref
  22. 22. S. Carda-Broch, A. Berthod, and D. W. Armstrong, Anal. Bioanal. Chem. 375, 191 (2003). https://doi.org/10.1007/s00216-002-1684-1, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.