No Access Submitted: 29 July 2018 Accepted: 27 April 2019 Published Online: 21 May 2019
Review of Scientific Instruments 90, 055109 (2019); https://doi.org/10.1063/1.5050270
more...View Affiliations
View Contributors
  • Jamie L. Y. Wu (巫柳依)
  • Friedjof Tellkamp
  • Mazdak Khajehpour
  • Wesley D. Robertson
  • R. J. Dwayne Miller
Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.
This work was supported by the Max Planck Society. We would like to thank Jessica Besaw and William Stuart for their help in the assembly and testing of the Microdrop autopipette system.
  1. 1. R. Callender and R. B. Dyer, Chem. Rev. 106, 3031 (2006). https://doi.org/10.1021/cr050284b, Google ScholarCrossref
  2. 2. K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern, Nature 450, 913 (2007). https://doi.org/10.1038/nature06407, Google ScholarCrossref, ISI
  3. 3. A. Mittermaier and L. E. Kay, Science 312, 224 (2006). https://doi.org/10.1126/science.1124964, Google ScholarCrossref, ISI
  4. 4. S. R. Martin and M. J. Schilstra, Protein-Ligand Interactions: Methods and Applications (Springer Science Business Media, New York, 2013), pp. 119–138. Google ScholarCrossref
  5. 5. B. Chance, J. Biol. Chem. 151, 553 (1943), ISSN 0021–9258. Google ScholarCrossref
  6. 6. S. Vahidi, B. B. Stocks, Y. Liaghati-Mobarhan, and L. Konermann, Anal. Chem. 85, 8618 (2013). https://doi.org/10.1021/ac401148z, Google ScholarCrossref
  7. 7. S. Akiyama, S. Takahashi, T. Kimura, K. Ishimori, I. Morishima, Y. Nishikawa, and T. Fujisawa, Proc. Natl. Acad. Sci. U. S. A. 99, 1329 (2002). https://doi.org/10.1073/pnas.012458999, Google ScholarCrossref
  8. 8. R. Bleul, M. Ritzi-Lehnert, J. Höth, N. Scharpfenecker, I. Frese, D. Düchs, S. Brunklaus, T. E. Hansen-Hagge, F.-J. Meyer-Almes, and K. S. Drese, Anal. Bioanal. Chem. 399, 1117 (2011). https://doi.org/10.1007/s00216-010-4446-5, Google ScholarCrossref
  9. 9. M. Guo, B. Bhaskar, H. Li, T. P. Barrows, and T. L. Poulos, Proc. Natl. Acad. Sci. U. S. A. 101, 5940 (2004). https://doi.org/10.1073/pnas.0306708101, Google ScholarCrossref
  10. 10. A. V. Cherepanov and S. De Vries, Biochim. Biophys. Acta 1656, 1 (2004). https://doi.org/10.1016/j.bbabio.2004.02.006, Google ScholarCrossref
  11. 11. M. C. Shastry, S. D. Luck, and H. Roder, Biophys. J. 74, 2714 (1998). https://doi.org/10.1016/s0006-3495(98)77977-9, Google ScholarCrossref
  12. 12. A. P. Sudarsan and V. M. Ugaz, Proc. Natl. Acad. Sci. U. S. A. 103, 7228 (2006). https://doi.org/10.1073/pnas.0507976103, Google ScholarCrossref
  13. 13. B. A. Cola, D. K. Schaffer, T. S. Fisher, and M. A. Stremler, J. Microelectromech. Syst. 15, 259 (2006). https://doi.org/10.1109/jmems.2005.863786, Google ScholarCrossref
  14. 14. Y.-K. Lee, J. Deval, P. Tabeling, and C.-M. Ho, in The 14th IEEE Workshop in MEMS (IEEE, 2001). Google Scholar
  15. 15. M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, Anal. Chem. 73, 5822 (2001). https://doi.org/10.1021/ac0155411, Google ScholarCrossref, ISI
  16. 16. H. H. Bau, J. Zhong, and M. Yi, Sens. Actuators B 79, 207 (2001). https://doi.org/10.1016/s0925-4005(01)00851-6, Google ScholarCrossref, ISI
  17. 17. D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, Lab Chip 9, 2738 (2009). https://doi.org/10.1039/b903687c, Google ScholarCrossref
  18. 18. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007). https://doi.org/10.1021/ac070081i, Google ScholarCrossref
  19. 19. D. Wang, U. Weierstall, L. Pollack, and J. Spence, J. Synchrotron Radiat. 21, 1364 (2014). https://doi.org/10.1107/s160057751401858x, Google ScholarCrossref
  20. 20. H. Aref, J. Fluid Mech. 143, 1 (1984). https://doi.org/10.1017/s0022112084001233, Google ScholarCrossref
  21. 21. D. N. Mortensen and E. R. Williams, Anal. Chem. 86, 9315 (2014). https://doi.org/10.1021/ac502545r, Google ScholarCrossref
  22. 22. H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006). https://doi.org/10.1002/anie.200601554, Google ScholarCrossref, ISI
  23. 23. B. Carroll and C. Hidrovo, Heat Transfer Eng. 34, 120 (2013). https://doi.org/10.1080/01457632.2013.703087, Google ScholarCrossref
  24. 24. M. Yamamoto, K. Hirata, K. Yamashita, K. Hasegawa, G. Ueno, H. Ago, and T. Kumasaka, IUCrJ 4, 529 (2017). https://doi.org/10.1107/s2052252517008193, Google ScholarCrossref
  25. 25. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schröter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, Nature 470, 73 (2011). https://doi.org/10.1038/nature09750, Google ScholarCrossref, ISI
  26. 26. C. G. Roessler, A. Kuczewski, R. Stearns, R. Ellson, J. Olechno, A. M. Orville, M. Allaire, A. S. Soares, and A. Héroux, J. Synchrotron Radiat. 20, 805 (2013). https://doi.org/10.1107/s0909049513020372, Google ScholarCrossref
  27. 27. F. D. Fuller, S. Gul, R. Chatterjee, E. S. Burgie, I. D. Young, H. Lebrette, V. Srinivas, A. S. Brewster, T. Michels-Clark, J. A. Clinger, B. Andi, M. Ibrahim, E. Pastor, C. de Lichtenberg, R. Hussein, C. J. Pollock, M. Zhang, C. A. Stan, T. Kroll, T. Fransson, C. Weninger, M. Kubin, P. Aller, L. Lassalle, P. Bräuer, M. D. Miller, M. Amin, S. Koroidov, C. G. Roessler, M. Allaire, R. G. Sierra, P. T. Docker, J. M. Glownia, S. Nelson, J. E. Koglin, D. Zhu, M. Chollet, S. Song, H. Lemke, M. Liang, D. Sokaras, R. Alonso-Mori, A. Zouni, J. Messinger, U. Bergmann, A. K. Boal, J. M. Bollinger, Jr., C. Krebs, M. Högbom, G. N. Phillips, Jr., R. D. Vierstra, N. K. Sauter, A. M. Orville, J. Kern, V. K. Yachandra, and J. Yano, Nat. Methods 14, 443 (2017). https://doi.org/10.1038/nmeth.4195, Google ScholarCrossref
  28. 28. R. Graceffa, M. Burghammer, R. J. Davies, and C. Riekel, Appl. Phys. Lett. 101, 254101 (2012). https://doi.org/10.1063/1.4772631, Google ScholarScitation, ISI
  29. 29. R. Graceffa, M. Burghammer, R. J. Davies, and C. Riekel, Rev. Sci. Instrum. 79, 086106 (2008). https://doi.org/10.1063/1.2964108, Google ScholarScitation, ISI
  30. 30. R. Graceffa, M. Burghammer, R. J. Davies, C. Ponchut, and C. Riekel, Appl. Phys. Lett. 94, 062902 (2009). https://doi.org/10.1063/1.3078821, Google ScholarScitation, ISI
  31. 31. M. Rössle, D. Flot, J. Engel, M. Burghammer, C. Riekel, and H. Chanzy, Biomacromolecules 4, 981 (2003). https://doi.org/10.1021/bm0340218, Google ScholarCrossref
  32. 32. C. Riekel, M. Burghammer, D. Flot, and M. Rössle, Fibre Diffr. Rev. 12, 36 (2004). https://doi.org/10.1382/s20041236, Google ScholarCrossref
  33. 33. R. Graceffa, Development of a Drop-On-Demand Inkjet System for Stroboscopic Small- and Wide-Angle X-Ray Scattering Experiments (Joseph Fourier University, Grenoble, France, 2010). Google Scholar
  34. 34. C. A. Stan, D. Milathianaki, H. Laksmono, R. G. Sierra, T. A. McQueen, M. Messerschmidt, G. J. Williams, J. E. Koglin, T. J. Lane, M. J. Hayes, S. A. H. Guillet, M. Liang, A. L. Aquila, P. R. Willmott, J. S. Robinson, K. L. Gumerlock, S. Botha, K. Nass, I. Schlichting, R. L. Shoeman, H. A. Stone, and S. Boutet, Nat. Phys. 12, 966 (2016). https://doi.org/10.1038/nphys3779, Google ScholarCrossref
  35. 35. M. J. Jebrail, V. N. Luk, S. C. C. Shih, R. Fobel, A. H. C. Ng, H. Yang, S. L. S. Freire, and A. R. Wheeler, J. Vis. Exp. 33, e1603 (2009). https://doi.org/10.3791/1603, Google ScholarCrossref
  36. 36. M. Heymann, A. Opthalage, J. L. Wierman, S. Akella, D. M. E. Szebenyi, S. M. Gruner, and S. Fraden, IUCrJ 1, 349 (2014). https://doi.org/10.1107/s2052252514016960, Google ScholarCrossref
  37. 37. M. O. Wiedorn, S. Awel, A. J. Morgan, K. Ayyer, Y. Gevorkov, H. Fleckenstein, N. Roth, L. Adriano, R. Bean, K. R. Beyerlein, J. Chen, J. Coe, F. Cruz-Mazo, T. Ekeberg, R. Graceffa, M. Heymann, D. A. Horke, J. Knoška, V. Mariani, R. Nazari, D. Oberthür, A. K. Samanta, R. G. Sierra, C. A. Stan, O. Yefanov, D. Rompotis, J. Correa, B. Erk, R. Treusch, J. Schulz, B. G. Hogue, A. M. Gañán-Calvo, P. Fromme, J. Küpper, A. V. Rode, S. Bajt, R. A. Kirian, and H. N. Chapman, IUCrJ 5, 574 (2018). https://doi.org/10.1107/s2052252518008369, Google ScholarCrossref
  38. 38. E. C. Schulz, J. Kaub, F. Busse, P. Mehrabi, H. M. Müller-Werkmeister, E. F. Pai, W. D. Robertson, and R. J. Dwayne Miller, J. Appl. Crystallogr. 50, 1773 (2017). https://doi.org/10.1107/s1600576717014479, Google ScholarCrossref
  39. 39. B. F. Peterman, Anal. Biochem. 93, 442 (1979). https://doi.org/10.1016/s0003-2697(79)80176-1, Google ScholarCrossref
  40. 40. J. R. Lakowicz, Probe Design and Chemical Sensing, Topics in Fluorescence Spectroscopy (Springer Science & Business Media, 2006), Vol. 4. Google Scholar
  41. 41. A. A. Cantú, Forensic Sci. Int. 219, 119 (2012). https://doi.org/10.1016/j.forsciint.2011.12.008, Google ScholarCrossref
  42. 42. H. J. Holterman, Kinetics and Evaporation of Water Drops in Air (IMAG, Wageningen, Netherlands, 2003). Google ScholarCrossref
  43. 43. Y. O. Popov, Phys. Rev. E 71, 036313 (2005). https://doi.org/10.1103/physreve.71.036313, Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.