No Access Submitted: 19 June 2018 Accepted: 29 August 2018 Published Online: 01 October 2018
Appl. Phys. Lett. 113, 143101 (2018); https://doi.org/10.1063/1.5045282
Nanometer-sharp metallic tips are known to be excellent electron emitters. They are used in highest-resolution electron microscopes in cold field emission mode to generate the most coherent electron beam in continuous-wave operation. For time-resolved operation, sharp metal needle tips have recently been triggered with femtosecond laser pulses. We show here that electrons emitted with near-infrared femtosecond laser pulses at laser oscillator repetition rates show the same spatial coherence properties as electrons in cold field emission mode in cw operation. From electron interference fringes, obtained with the help of a carbon nanotube biprism beam splitter, we deduce a virtual source size of less than (0.65 ± 0.06) nm for both operation modes, a factor of ten smaller than the geometrical source size. These results bear promise for ultrafast electron diffraction, ultrafast electron microscopy, and other techniques relying on highly coherent and ultrafast electron beams.
The authors thank P. Weber for his technical support. This work was supported in part by the European Research Council (Consolidator Grant NearFieldAtto and Starting Grant No. 336749) and the Deutsche Forschungsgemeinschaft via the grant SFB 953 and the Nanosystems Initiative Munich (NIM). A.H. also acknowledges the support from the Center for NanoScience (CeNS) and LMUinnovativ.
  1. 1. F. Hasselbach, Rep. Prog. Phys. 73, 016101 (2010). https://doi.org/10.1088/0034-4885/73/1/016101, Google ScholarCrossref
  2. 2. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006). https://doi.org/10.1146/annurev.physchem.57.032905.104748, Google ScholarCrossref, ISI
  3. 3. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, Proc. Natl. Acad. Sci. 107, 19714 (2010). https://doi.org/10.1073/pnas.1010165107, Google ScholarCrossref
  4. 4. B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462, 902 (2009). https://doi.org/10.1038/nature08662, Google ScholarCrossref
  5. 5. A. Feist, N. Bach, N. R. da Silva, T. Danz, M. Möller, K. E. Priebe, T. Domröse, J. G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, and C. Ropers, Ultramicroscopy 176, 63 (2017). https://doi.org/10.1016/j.ultramic.2016.12.005, Google ScholarCrossref, ISI
  6. 6. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006). https://doi.org/10.1103/PhysRevLett.97.247402, Google ScholarCrossref, ISI
  7. 7. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006). https://doi.org/10.1103/PhysRevLett.96.077401, Google ScholarCrossref, ISI
  8. 8. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007). https://doi.org/10.1103/PhysRevLett.98.043907, Google ScholarCrossref, ISI
  9. 9. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009). https://doi.org/10.1103/PhysRevLett.103.257603, Google ScholarCrossref, ISI
  10. 10. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010). https://doi.org/10.1103/PhysRevLett.105.147601, Google ScholarCrossref, ISI
  11. 11. M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010). https://doi.org/10.1103/PhysRevLett.105.257601, Google ScholarCrossref, ISI
  12. 12. M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011). https://doi.org/10.1038/nature10196, Google ScholarCrossref, ISI
  13. 13. C. Kealhofer, S. M. Foreman, S. Gerlich, and M. A. Kasevich, Phys. Rev. B 86, 035405 (2012). https://doi.org/10.1103/PhysRevB.86.035405, Google ScholarCrossref
  14. 14. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012). https://doi.org/10.1038/nature10878, Google ScholarCrossref, ISI
  15. 15. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schafer, and C. Ropers, Science 345, 200 (2014). https://doi.org/10.1126/science.1250658, Google ScholarCrossref
  16. 16. T. Juffmann, B. B. Klopfer, G. E. Skulason, C. Kealhofer, F. Xiao, S. M. Foreman, and M. A. Kasevich, Phys. Rev. Lett. 115, 264803 (2015). https://doi.org/10.1103/PhysRevLett.115.264803, Google ScholarCrossref
  17. 17. J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, Nano Lett. 15, 4685 (2015). https://doi.org/10.1021/acs.nanolett.5b01513, Google ScholarCrossref
  18. 18. M. Krüger, C. Lemell, G. Wachter, J. Burgdoerfer, and P. Hommelhoff, J. Phys. B 51, 172001 (2018). https://doi.org/10.1088/1361-6455/aac6ac, Google ScholarCrossref
  19. 19. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2014). https://doi.org/10.1038/nphoton.2013.288, Google ScholarCrossref
  20. 20. M. Müller, A. Paarmann, and R. Ernstorfer, Nat. Commun. 5, 5292 (2014). https://doi.org/10.1038/ncomms6292, Google ScholarCrossref
  21. 21. A. R. Bainbridge, C. W. B. Myers, and W. A. Bryan, Struct. Dyn. 3, 023612 (2016). https://doi.org/10.1063/1.4947098, Google ScholarCrossref
  22. 22. F. Zernike, Physica 5, 785 (1938). https://doi.org/10.1016/S0031-8914(38)80203-2, Google ScholarCrossref
  23. 23. G. Pozzi, Optik 77, 69 (1987). Google Scholar
  24. 24. J. Spence, W. Qian, and A. Melmed, Ultramicroscopy 52, 473 (1993). https://doi.org/10.1016/0304-3991(93)90063-4, Google ScholarCrossref
  25. 25. B. Cho, T. Ichimura, R. Shimizu, and C. Oshima, Phys. Rev. Lett. 92, 246103 (2004). https://doi.org/10.1103/PhysRevLett.92.246103, Google ScholarCrossref, ISI
  26. 26. D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, and P. Hommelhoff, Phys. Rev. Lett. 114, 227601 (2015). https://doi.org/10.1103/PhysRevLett.114.227601, Google ScholarCrossref
  27. 27. J. Cumings, A. Zettl, and M. McCartney, Microsc. Microanal. 10, 420 (2004). https://doi.org/10.1017/S1431927604040759, Google ScholarCrossref
  28. 28. C.-C. Chang, H.-S. Kuo, I.-S. Hwang, and T. T. Tsong, Nanotechnology 20, 115401 (2009). https://doi.org/10.1088/0957-4484/20/11/115401, Google ScholarCrossref
  29. 29. I.-S. Hwang, C.-C. Chang, C.-H. Lu, S.-C. Liu, Y.-C. Chang, T.-K. Lee, H.-T. Jeng, H.-S. Kuo, C.-Y. Lin, C.-S. Chang, and T. T. Tsong, New J. Phys. 15, 043015 (2013). https://doi.org/10.1088/1367-2630/15/4/043015, Google ScholarCrossref
  30. 30. P. Musumeci, L. Cultrera, M. Ferrario, D. Filippetto, G. Gatti, M. S. Gutierrez, J. T. Moody, N. Moore, J. B. Rosenzweig, C. M. Scoby, G. Travish, and C. Vicario, Phys. Rev. Lett. 104, 084801 (2010). https://doi.org/10.1103/PhysRevLett.104.084801, Google ScholarCrossref
  31. 31. R. Boyd and D. Prato, Nonlinear Optics, Nonlinear Optics Series ( Elsevier Science, Amsterdam, 2008). Google Scholar
  32. 32. P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, Opt. Express 18, 24206 (2010). https://doi.org/10.1364/OE.18.024206, Google ScholarCrossref
  33. 33. C. E. Mendenhall and C. F. DeVoe, Phys. Rev. 51, 346 (1937). https://doi.org/10.1103/PhysRev.51.346, Google ScholarCrossref
  34. 34. E. W. Müller, Advances in Electronics and Electron Physics ( Elsevier BV, University Park, Pennsylvania, 1960), Vol. 13, pp. 83–179. Google Scholar
  35. 35. B. Gault, M. Moody, J. Cairney, and S. Ringer, Atom Probe Microscopy, Springer Series in Materials Science ( Springer, New York, 2012). Google Scholar
  36. 36. M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, and A. Högele, Nat. Nanotechnol. 8, 502 (2013). https://doi.org/10.1038/nnano.2013.119, Google ScholarCrossref
  37. 37. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, J. Phys. B 45, 074006 (2012). https://doi.org/10.1088/0953-4075/45/7/074006, Google ScholarCrossref
  38. 38. T. Latychevskaia, Ultramicroscopy 175, 121 (2017). https://doi.org/10.1016/j.ultramic.2016.11.008, Google ScholarCrossref
  39. 39. S. Tsujino, J. Appl. Phys. 124, 044304 (2018). https://doi.org/10.1063/1.5035284, Google ScholarScitation, ISI
  40. 40. G. Möllenstedt and H. Düker, Z. Phys. 145, 377 (1956). https://doi.org/10.1007/BF01326780, Google ScholarCrossref
  41. 41. U. Weierstall, J. Spence, M. Stevens, and K. Downing, Micron 30, 335 (1999). https://doi.org/10.1016/S0968-4328(99)00022-0, Google ScholarCrossref
  42. 42. H. Ogawa, N. Arai, K. Nagaoka, S. Uchiyama, T. Yamashita, H. Itoh, and C. Oshima, Surf. Sci. 357–358, 371 (1996). https://doi.org/10.1016/0039-6028(96)00184-7, Google ScholarCrossref
  43. 43. H. Kiesel, A. Renz, and F. Hasselbach, Nature 418, 392 (2002). https://doi.org/10.1038/nature00911, Google ScholarCrossref
  44. 44. J. C. H. Spence, High-Resolution Electron Microscopy ( Oxford University Press, Oxford, 2013). Google ScholarCrossref
  45. 45. H. Lichte and M. Lehmann, Rep. Prog. Phys. 71, 016102 (2008). https://doi.org/10.1088/0034-4885/71/1/016102, Google ScholarCrossref
  46. 46. B. Cook and P. Kruit, Appl. Phys. Lett. 109, 151901 (2016). https://doi.org/10.1063/1.4963783, Google ScholarScitation, ISI
  1. © 2018 Author(s). Published by AIP Publishing.