ABSTRACT
Nanometer-sharp metallic tips are known to be excellent electron emitters. They are used in highest-resolution electron microscopes in cold field emission mode to generate the most coherent electron beam in continuous-wave operation. For time-resolved operation, sharp metal needle tips have recently been triggered with femtosecond laser pulses. We show here that electrons emitted with near-infrared femtosecond laser pulses at laser oscillator repetition rates show the same spatial coherence properties as electrons in cold field emission mode in cw operation. From electron interference fringes, obtained with the help of a carbon nanotube biprism beam splitter, we deduce a virtual source size of less than (0.65 ± 0.06) nm for both operation modes, a factor of ten smaller than the geometrical source size. These results bear promise for ultrafast electron diffraction, ultrafast electron microscopy, and other techniques relying on highly coherent and ultrafast electron beams.
The authors thank P. Weber for his technical support. This work was supported in part by the European Research Council (Consolidator Grant NearFieldAtto and Starting Grant No. 336749) and the Deutsche Forschungsgemeinschaft via the grant SFB 953 and the Nanosystems Initiative Munich (NIM). A.H. also acknowledges the support from the Center for NanoScience (CeNS) and LMUinnovativ.
REFERENCES
- 1. F. Hasselbach, Rep. Prog. Phys. 73, 016101 (2010). https://doi.org/10.1088/0034-4885/73/1/016101, Google ScholarCrossref
- 2. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006). https://doi.org/10.1146/annurev.physchem.57.032905.104748, Google ScholarCrossref, ISI
- 3. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, Proc. Natl. Acad. Sci. 107, 19714 (2010). https://doi.org/10.1073/pnas.1010165107, Google ScholarCrossref
- 4. B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462, 902 (2009). https://doi.org/10.1038/nature08662, Google ScholarCrossref
- 5. A. Feist, N. Bach, N. R. da Silva, T. Danz, M. Möller, K. E. Priebe, T. Domröse, J. G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, and C. Ropers, Ultramicroscopy 176, 63 (2017). https://doi.org/10.1016/j.ultramic.2016.12.005, Google ScholarCrossref, ISI
- 6. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006). https://doi.org/10.1103/PhysRevLett.97.247402, Google ScholarCrossref, ISI
- 7. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006). https://doi.org/10.1103/PhysRevLett.96.077401, Google ScholarCrossref, ISI
- 8. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007). https://doi.org/10.1103/PhysRevLett.98.043907, Google ScholarCrossref, ISI
- 9. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009). https://doi.org/10.1103/PhysRevLett.103.257603, Google ScholarCrossref, ISI
- 10. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010). https://doi.org/10.1103/PhysRevLett.105.147601, Google ScholarCrossref, ISI
- 11. M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010). https://doi.org/10.1103/PhysRevLett.105.257601, Google ScholarCrossref, ISI
- 12. M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011). https://doi.org/10.1038/nature10196, Google ScholarCrossref, ISI
- 13. C. Kealhofer, S. M. Foreman, S. Gerlich, and M. A. Kasevich, Phys. Rev. B 86, 035405 (2012). https://doi.org/10.1103/PhysRevB.86.035405, Google ScholarCrossref
- 14. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012). https://doi.org/10.1038/nature10878, Google ScholarCrossref, ISI
- 15. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schafer, and C. Ropers, Science 345, 200 (2014). https://doi.org/10.1126/science.1250658, Google ScholarCrossref
- 16. T. Juffmann, B. B. Klopfer, G. E. Skulason, C. Kealhofer, F. Xiao, S. M. Foreman, and M. A. Kasevich, Phys. Rev. Lett. 115, 264803 (2015). https://doi.org/10.1103/PhysRevLett.115.264803, Google ScholarCrossref
- 17. J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, Nano Lett. 15, 4685 (2015). https://doi.org/10.1021/acs.nanolett.5b01513, Google ScholarCrossref
- 18. M. Krüger, C. Lemell, G. Wachter, J. Burgdoerfer, and P. Hommelhoff, J. Phys. B 51, 172001 (2018). https://doi.org/10.1088/1361-6455/aac6ac, Google ScholarCrossref
- 19. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2014). https://doi.org/10.1038/nphoton.2013.288, Google ScholarCrossref
- 20. M. Müller, A. Paarmann, and R. Ernstorfer, Nat. Commun. 5, 5292 (2014). https://doi.org/10.1038/ncomms6292, Google ScholarCrossref
- 21. A. R. Bainbridge, C. W. B. Myers, and W. A. Bryan, Struct. Dyn. 3, 023612 (2016). https://doi.org/10.1063/1.4947098, Google ScholarCrossref
- 22. F. Zernike, Physica 5, 785 (1938). https://doi.org/10.1016/S0031-8914(38)80203-2, Google ScholarCrossref
- 23. G. Pozzi, Optik 77, 69 (1987). Google Scholar
- 24. J. Spence, W. Qian, and A. Melmed, Ultramicroscopy 52, 473 (1993). https://doi.org/10.1016/0304-3991(93)90063-4, Google ScholarCrossref
- 25. B. Cho, T. Ichimura, R. Shimizu, and C. Oshima, Phys. Rev. Lett. 92, 246103 (2004). https://doi.org/10.1103/PhysRevLett.92.246103, Google ScholarCrossref, ISI
- 26. D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, and P. Hommelhoff, Phys. Rev. Lett. 114, 227601 (2015). https://doi.org/10.1103/PhysRevLett.114.227601, Google ScholarCrossref
- 27. J. Cumings, A. Zettl, and M. McCartney, Microsc. Microanal. 10, 420 (2004). https://doi.org/10.1017/S1431927604040759, Google ScholarCrossref
- 28. C.-C. Chang, H.-S. Kuo, I.-S. Hwang, and T. T. Tsong, Nanotechnology 20, 115401 (2009). https://doi.org/10.1088/0957-4484/20/11/115401, Google ScholarCrossref
- 29. I.-S. Hwang, C.-C. Chang, C.-H. Lu, S.-C. Liu, Y.-C. Chang, T.-K. Lee, H.-T. Jeng, H.-S. Kuo, C.-Y. Lin, C.-S. Chang, and T. T. Tsong, New J. Phys. 15, 043015 (2013). https://doi.org/10.1088/1367-2630/15/4/043015, Google ScholarCrossref
- 30. P. Musumeci, L. Cultrera, M. Ferrario, D. Filippetto, G. Gatti, M. S. Gutierrez, J. T. Moody, N. Moore, J. B. Rosenzweig, C. M. Scoby, G. Travish, and C. Vicario, Phys. Rev. Lett. 104, 084801 (2010). https://doi.org/10.1103/PhysRevLett.104.084801, Google ScholarCrossref
- 31. R. Boyd and D. Prato, Nonlinear Optics, Nonlinear Optics Series ( Elsevier Science, Amsterdam, 2008). Google Scholar
- 32. P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, Opt. Express 18, 24206 (2010). https://doi.org/10.1364/OE.18.024206, Google ScholarCrossref
- 33. C. E. Mendenhall and C. F. DeVoe, Phys. Rev. 51, 346 (1937). https://doi.org/10.1103/PhysRev.51.346, Google ScholarCrossref
- 34. E. W. Müller, Advances in Electronics and Electron Physics ( Elsevier BV, University Park, Pennsylvania, 1960), Vol. 13, pp. 83–179. Google Scholar
- 35. B. Gault, M. Moody, J. Cairney, and S. Ringer, Atom Probe Microscopy, Springer Series in Materials Science ( Springer, New York, 2012). Google Scholar
- 36. M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, and A. Högele, Nat. Nanotechnol. 8, 502 (2013). https://doi.org/10.1038/nnano.2013.119, Google ScholarCrossref
- 37. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, J. Phys. B 45, 074006 (2012). https://doi.org/10.1088/0953-4075/45/7/074006, Google ScholarCrossref
- 38. T. Latychevskaia, Ultramicroscopy 175, 121 (2017). https://doi.org/10.1016/j.ultramic.2016.11.008, Google ScholarCrossref
- 39. S. Tsujino, J. Appl. Phys. 124, 044304 (2018). https://doi.org/10.1063/1.5035284, Google ScholarScitation, ISI
- 40. G. Möllenstedt and H. Düker, Z. Phys. 145, 377 (1956). https://doi.org/10.1007/BF01326780, Google ScholarCrossref
- 41. U. Weierstall, J. Spence, M. Stevens, and K. Downing, Micron 30, 335 (1999). https://doi.org/10.1016/S0968-4328(99)00022-0, Google ScholarCrossref
- 42. H. Ogawa, N. Arai, K. Nagaoka, S. Uchiyama, T. Yamashita, H. Itoh, and C. Oshima, Surf. Sci. 357–358, 371 (1996). https://doi.org/10.1016/0039-6028(96)00184-7, Google ScholarCrossref
- 43. H. Kiesel, A. Renz, and F. Hasselbach, Nature 418, 392 (2002). https://doi.org/10.1038/nature00911, Google ScholarCrossref
- 44. J. C. H. Spence, High-Resolution Electron Microscopy ( Oxford University Press, Oxford, 2013). Google ScholarCrossref
- 45. H. Lichte and M. Lehmann, Rep. Prog. Phys. 71, 016102 (2008). https://doi.org/10.1088/0034-4885/71/1/016102, Google ScholarCrossref
- 46. B. Cook and P. Kruit, Appl. Phys. Lett. 109, 151901 (2016). https://doi.org/10.1063/1.4963783, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.