No Access Submitted: 09 June 2018 Accepted: 28 August 2018 Published Online: 14 September 2018
J. Chem. Phys. 149, 104109 (2018); https://doi.org/10.1063/1.5043480
more...View Affiliations
View Contributors
  • Kirk H. Bevan
  • Antoine Roy-Gobeil
  • Yoichi Miyahara
  • Peter Grutter
In this work, we explore Franck-Condon blockade in the “redox limit,” where nuclear relaxation processes occur much faster than the rate of electron transfer. To this end, the quantized rate expressions for electron transfer are recast in terms of a quantized redox density of states (DOS) within a single phonon mode model. In the high temperature regime, this single-particle picture formulation of electron transfer is shown to agree well with the semi-classical rate and DOS expressions developed by Gerischer and Hopfield. Upon incorporation into a two electrode formulation, utilizing the master equation approach, the low temperature quantized conductance features of Franck-Condon blockade are reproduced. Moreover, at sufficiently large reorganization energies, it is argued that Franck-Condon blockade should also be observable in room temperature systems. In general, this work aims to further bridge descriptions of electron transfer and transport in the single-particle picture.
Financial support from NSERC of Canada and FQRNT of Québec is gratefully acknowledged.
  1. 1. M. Thoss and F. Evers, J. Chem. Phys. 148, 030901 (2018). https://doi.org/10.1063/1.5003306, Google ScholarScitation, ISI
  2. 2. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005). Google ScholarCrossref
  3. 3. B. Muralidharan, A. W. Ghosh, and S. Datta, Phys. Rev. B 73, 155410 (2006). https://doi.org/10.1103/physrevb.73.155410, Google ScholarCrossref, ISI
  4. 4. J. Koch, F. von Oppen, and A. V. Andreev, Phys. Rev. B 74, 205438 (2006). https://doi.org/10.1103/physrevb.74.205438, Google ScholarCrossref, ISI
  5. 5. X. H. Qiu, G. V. Nazin, and W. Ho, Phys. Rev. Lett. 92, 206102 (2004). https://doi.org/10.1103/physrevlett.92.206102, Google ScholarCrossref, ISI
  6. 6. S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science 280, 2098 (1998). https://doi.org/10.1126/science.280.5372.2098, Google ScholarCrossref, ISI
  7. 7. F.-R. F. Fan and A. J. Bard, Science 277, 1791 (1997). https://doi.org/10.1126/science.277.5333.1791, Google ScholarCrossref, ISI
  8. 8. J. Kane, J. Ong, and R. F. Saraf, J. Mater. Chem. 21, 16846 (2011). https://doi.org/10.1039/c1jm12005k, Google ScholarCrossref
  9. 9. J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005). https://doi.org/10.1103/physrevlett.94.206804, Google ScholarCrossref, ISI
  10. 10. E. Burzurí, Y. Yamamoto, M. Warnock, X. Zhong, K. Park, A. Cornia, and H. S. J. van der Zant, Nano Lett. 14, 3191 (2014). https://doi.org/10.1021/nl500524w, Google ScholarCrossref, ISI
  11. 11. C. S. Lau, H. Sadeghi, G. Rogers, S. Sangtarash, P. Dallas, K. Porfyrakis, J. Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol, Nano Lett. 16, 170 (2015). https://doi.org/10.1021/acs.nanolett.5b03434, Google ScholarCrossref, ISI
  12. 12. J. Franck and E. G. Dymond, Trans. Faraday Soc. 21, 536 (1926). https://doi.org/10.1039/tf9262100536, Google ScholarCrossref
  13. 13. E. Condon, Phys. Rev. 28, 1182 (1926). https://doi.org/10.1103/physrev.28.1182, Google ScholarCrossref
  14. 14. J. J. Hopfield, Proc. Natl. Acad. Sci. U. S. A. 71, 3640 (1974). https://doi.org/10.1073/pnas.71.9.3640, Google ScholarCrossref, ISI
  15. 15. H. Gerischer, Z. Phys. Chem. 26, 223 (1960). https://doi.org/10.1524/zpch.1960.26.3_4.223, Google ScholarCrossref
  16. 16. H. Gerischer, Z. Phys. Chem. 26, 325 (1960). https://doi.org/10.1524/zpch.1960.26.5_6.325, Google ScholarCrossref
  17. 17. H. Gerischer, Z. Phys. Chem. 27, 48 (1961). https://doi.org/10.1524/zpch.1961.27.1_2.048, Google ScholarCrossref
  18. 18. K. H. Bevan, J. Chem. Phys. 146, 134106 (2017). https://doi.org/10.1063/1.4979572, Google ScholarScitation, ISI
  19. 19. I. G. Medvedev, J. Electroanal. Chem. 660, 285 (2011). https://doi.org/10.1016/j.jelechem.2010.09.023, Google ScholarCrossref, ISI
  20. 20. I. G. Medvedev, J. Chem. Phys. 141, 124706 (2014). https://doi.org/10.1063/1.4895895, Google ScholarScitation, ISI
  21. 21. J. Zhang, A. M. Kuznetsov, I. G. Medvedev, Q. Chi, T. Albrecht, P. S. Jensen, and J. Ulstrup, Chem. Rev. 108, 2737 (2008). https://doi.org/10.1021/cr068073+, Google ScholarCrossref, ISI
  22. 22. R. Arielly, M. Vadai, D. Kardash, G. Noy, and Y. Selzer, J. Am. Chem. Soc. 136, 2674 (2014). https://doi.org/10.1021/ja412668f, Google ScholarCrossref, ISI
  23. 23. A. M. Kuznetsov and I. G. Medvedev, Phys. Rev. B 78, 153403 (2008). https://doi.org/10.1103/physrevb.78.153403, Google ScholarCrossref, ISI
  24. 24. A. M. Kuznetsov and J. Ulstrup, J. Phys. Chem. A 104, 11531 (2000). https://doi.org/10.1021/jp993635x, Google ScholarCrossref, ISI
  25. 25. W. Schmickler, Surf. Sci. 295, 43 (1993). https://doi.org/10.1016/0039-6028(93)90183-k, Google ScholarCrossref, ISI
  26. 26. A. M. Kuznetsov, Charge Transfer in Physics, Chemistry, and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory (Gordon and Breach Publishers, 1995). Google Scholar
  27. 27. V. G. Levich, “Kinetics of reactions with charge transfer,” in Physical Chemistry: An Advanced Treatise, Vol. Xb (Academic Press, New York, 1970). Google Scholar
  28. 28. K. H. Bevan, D. Kienle, H. Guo, and S. Datta, Phys. Rev. B 78, 035303 (2008). https://doi.org/10.1103/physrevb.78.035303, Google ScholarCrossref, ISI
  29. 29. N. Abraham, “Electronic tunnel factors in molecular electron transfer and molecular conduction,” in Encyclopedia of Electrochemistry (American Cancer Society, 2007). Google Scholar
  30. 30. C. E. D. Chidsey, Science 251, 919 (1991). https://doi.org/10.1126/science.251.4996.919, Google ScholarCrossref, ISI
  31. 31. K. H. Bevan, M. S. Hossain, A. Iqbal, and Z. Wang, J. Phys. Chem. C 120, 179 (2016). https://doi.org/10.1021/acs.jpcc.5b09653, Google ScholarCrossref, ISI
  32. 32. M. S. Hossain and K. H. Bevan, J. Phys. Chem. C 120, 188 (2016). https://doi.org/10.1021/acs.jpcc.5b09654, Google ScholarCrossref, ISI
  33. 33.The symbol λ is reserved for denoting reorganization energies, as is common in the chemistry literature.
  34. 34. W. Schmickler, M. A. Rampi, E. Tran, and G. M. Whitesides, Faraday Discuss. 125, 171 (2004). https://doi.org/10.1039/b303587p, Google ScholarCrossref, ISI
  35. 35. W. Schmickler, Chem. Phys. 289, 349 (2003). https://doi.org/10.1016/s0301-0104(03)00063-6, Google ScholarCrossref, ISI
  36. 36. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, 1995). Google ScholarCrossref
  37. 37. W. Schmickler, Interfacial Electrochemistry, 1st ed. (Oxford University Press, 1996). Google ScholarCrossref
  38. 38. M. S. Hossain, B. Muralidharan, and K. H. Bevan, J. Phys. Chem. C 121, 18288 (2017). https://doi.org/10.1021/acs.jpcc.7b05753, Google ScholarCrossref, ISI
  39. 39. A. Roy-Gobeil, Y. Miyahara, K. H. Bevan, and P. Grutter, “Fully quantum mechanical electron transfer observed in a single redox molecule at a metal interface” (unpublished). Google Scholar
  40. 40. S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001). https://doi.org/10.1103/physrevlett.86.878, Google ScholarCrossref, ISI
  41. 41. A. Migliore, P. Schiff, and A. Nitzan, Phys. Chem. Chem. Phys. 14, 13746 (2012). https://doi.org/10.1039/c2cp41442b, Google ScholarCrossref, ISI
  42. 42. J. S. Seldenthuis, H. S. J. van der Zant, M. A. Ratner, and J. M. Thijssen, ACS Nano 7, 1445 (2008). https://doi.org/10.1021/nn800170h, Google ScholarCrossref, ISI
  43. 43. M. S. Hossain, A. Iqbal, and K. H. Bevan, Anal. Chem. 88, 9062 (2016). https://doi.org/10.1021/acs.analchem.6b01835, Google ScholarCrossref, ISI
  44. 44. M. J. Honeychurch, Langmuir 15, 5158 (1999). https://doi.org/10.1021/la990169u, Google ScholarCrossref, ISI
  45. 45. E. Tran, M. A. Rampi, and G. M. Whitesides, Angew. Chem., Int. Ed. 43, 3835 (2004). https://doi.org/10.1002/anie.200453945, Google ScholarCrossref, ISI
  46. 46. A. Herklotz et al., Nano Lett. 17, 1665 (2017). https://doi.org/10.1021/acs.nanolett.6b04949, Google ScholarCrossref, ISI
  47. 47. T. Fujimotoa and K. Awaga, Phys. Chem. Chem. Phys. 15, 8983 (2013). https://doi.org/10.1039/c3cp50755f, Google ScholarCrossref, ISI
  1. © 2018 Author(s). Published by AIP Publishing.