ABSTRACT
A nonlinear, neoclassical, two-fluid theory of the interaction of a single-helicity magnetic island chain with a resonant error-field in a quasi-cylindrical, low-β, tokamak plasma is presented. In particular, the analysis of Fitzpatrick [Phys. Plasmas 25, 042503 (2018)] is generalized to take explicit time dependence into account. Aside from the ability to more accurately treat time-varying problems, the main physical effect that is introduced into the theory by the incorporation of explicit time dependence is ion inertia. The formalism developed in the paper is used to analyze two time-varying problems. First, the interaction of a pre-existing magnetic island chain with a resonant error-field. Second, an error-field-maintained magnetic island chain. The latter problem is of direct relevance to experiments in which deliberately applied, multi-harmonic, resonant magnetic perturbations are used to suppress edge localized modes (ELMs) in tokamak plasmas. Indeed, the predictions of the theory are strikingly similar to data recently obtained from ELM suppression experiments in the DIII-D tokamak [R. Nazikian et al., Nucl. Fusion 58, 106010 (2018)].
ACKNOWLEDGMENTS
This research was funded by the U.S. Department of Energy under Contract No. DE-FG02-04ER-54742.
REFERENCES
- 1. T. E. Evans, R. A. Moyer, K. H. Burrell, M. E. Fenstermacher, I. Joseph, A. W. Leonard, T. H. Osborne, G. D. Porter, M. J. Schaffer, P. B. Snyder, P. R. Thomas, J. G. Watkins, and W. P. West, Nat. Phys. 2, 419 (2006). https://doi.org/10.1038/nphys312, Google ScholarCrossref, ISI
- 2. A. Kirk, E. Nardon, R. Akers, M. Bécoulet, G. De Temmerman, B. Dudson, B. Hnat, Y. Q. Liu, R. Martin, P. Tamain, D. Taylor, and MAST Team, Nucl. Fusion 50, 034008 (2010). https://doi.org/10.1088/0029-5515/50/3/034008, Google ScholarCrossref, ISI
- 3. Y. Liang, P. Lomas, I. Nunes, M. Gryaznevich, M. N. A. Beurskens, S. Brezinsek, J. W. Coenen, P. Denner, T. Eich, L. Frassinetti, S. Gerasimov, D. Harting, S. Jachmich, A. Meigs, J. Pearson, M. Rack, S. Saarelma, B. Sieglin, Y. Yang, L. Zeng, and JET-EFDA Contributors, Nucl. Fusion 53, 073036 (2013). https://doi.org/10.1088/0029-5515/53/7/073036, Google ScholarCrossref
- 4. Y. M. Jeon, J.-K. Park, S. W. Yoon, W. H. Ko, S. G. Lee, K. D. Lee, G. S. Yun, Y. U. Nam, W. C. Kim, J.-G. Kwak, K. S. Lee, H. K. Kim, and H. L. Yang, Phys. Rev. Lett. 109, 035004 (2012). https://doi.org/10.1103/PhysRevLett.109.035004, Google ScholarCrossref, ISI
- 5. P. B. Snyder, R. J. Groebner, J. W. Hughes, T. H. Osborne, M. Beurskens, A. W. Leonard, H. R. Wilson, and X. Q. Xu, Nucl. Fusion 51, 103016 (2011). https://doi.org/10.1088/0029-5515/51/10/103016, Google ScholarCrossref, ISI
- 6. M. R. Wade, R. Nazikian, J. S. de Grassie, T. E. Evans, N. M. Ferraro, R. A. Moyer, D. M. Orlov, R. J. Buttery, M. E. Fenstermacher, A. M. Garofalo, M. A. Lanctot, G. R. McKee, T. H. Osborne, M. A. Shafer, W. M. Solomon, P. B. Snyder, W. Suttrop, A. Wingen, E. A. Unterberg, and L. Zeng, Nucl. Fusion 55, 023002 (2015). https://doi.org/10.1088/0029-5515/55/2/023002, Google ScholarCrossref
- 7. P. H. Rutherford, Phys. Fluids 16, 1903 (1973). https://doi.org/10.1063/1.1694232, Google ScholarScitation, ISI
- 8. P. H. Rutherford, “ Basic physical processes of toroidal fusion plasmas,” in Proceedings of Course and Workshop, Varenna, 1985 (Commission of the European Communities, 1986), Vol. 2, p. 531. Google Scholar
- 9. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 022307 (2005). https://doi.org/10.1063/1.1833375, Google ScholarScitation, ISI
- 10. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 022308 (2005). https://doi.org/10.1063/1.1833391, Google ScholarScitation, ISI
- 11. R. Fitzpatrick, P. G. Watson, and F. L. Waelbroeck, Phys. Plasmas 12, 082510 (2005). https://doi.org/10.1063/1.2001644, Google ScholarScitation, ISI
- 12. R. Fitzpatrick, F. L. Waelbroeck, and F. Militello, Phys. Plasmas 13, 122507 (2006). https://doi.org/10.1063/1.2402914, Google ScholarScitation, ISI
- 13. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 14, 122502 (2007). https://doi.org/10.1063/1.2811928, Google ScholarScitation, ISI
- 14. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 15, 012502 (2008). https://doi.org/10.1063/1.2829757, Google ScholarScitation, ISI
- 15. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009). https://doi.org/10.1063/1.3191719, Google ScholarScitation, ISI
- 16. R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Controlled Fusion 52, 055006 (2010). https://doi.org/10.1088/0741-3335/52/5/055006, Google ScholarCrossref
- 17. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010). https://doi.org/10.1063/1.3432720, Google ScholarScitation, ISI
- 18. R. Fitzpatrick, Phys. Plasmas 23, 052506 (2016). https://doi.org/10.1063/1.4948559, Google ScholarScitation, ISI
- 19. R. Fitzpatrick, Phys. Plasmas 25, 042503 (2018). https://doi.org/10.1063/1.5022685, Google ScholarScitation, ISI
- 20. R. D. Hazeltine, M. Kotscheneuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985). https://doi.org/10.1063/1.865255, Google ScholarScitation, ISI
- 21. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). https://doi.org/10.1063/1.1706761, Google ScholarScitation, ISI
- 22. R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993). https://doi.org/10.1088/0029-5515/33/7/I08, Google ScholarCrossref, ISI
- 23. J. A. Wesson, Tokamaks, 3rd ed. ( Oxford University Press, 2004). Google Scholar
- 24. R. J. La Haye, C. C. Petty, E. J. Strait, F. L. Waelbroeck, and H. R. Wilson, Phys. Plasmas 10, 3644 (2003). https://doi.org/10.1063/1.1602452, Google ScholarScitation, ISI
- 25. P. Buratti, E. Alessi, M. Baruzzo, A. Casolari, E. Giovannozzi, C. Giroud, N. Hawkes, S. Menmuir, G. Purcella, and J. Contributors, Nucl. Fusion 56, 076004 (2016). https://doi.org/10.1088/0029-5515/56/7/076004, Google ScholarCrossref
- 26. Wolfram|Alpha, http://www.wolframalpha.com/input/?i=integrate+x\%5E(4*n-8)\%2F(1\%2Bx\%5E4)\%5En for Wolfram Alpha LLC, 2009. Google Scholar
- 27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition ( Academic Press, 1980), Eq. (3.613.1). Google Scholar
- 28. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition ( Academic Press, 1980), Eqs. (2.553.2) and (2.553.3). Google Scholar
- 29. A. J. Cole, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 99, 065001 (2007). https://doi.org/10.1103/PhysRevLett.99.065001, Google ScholarCrossref
- 30. R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998). https://doi.org/10.1063/1.873000, Google ScholarScitation, ISI
- 31. R. Fitzpatrick, Plasma Phys. Controlled Fusion 54, 094002 (2012). https://doi.org/10.1088/0741-3335/54/9/094002, Google ScholarCrossref
- 32. R. Fitzpatrick, Phys. Plasmas 21, 092513 (2014). https://doi.org/10.1063/1.4896244, Google ScholarScitation, ISI
- 33. R. Nazikian, C. C. Petty, A. Bortolon, X. Chen, D. Eldon, T. E. Evans, B. A. Grierson, N. M. Ferraro, S. R. Haskey, M. Knolker, C. Lasnier, N. C. Logan, R. A. Moyer, D. Orlov, T. H. Osborne, P. B. Synder, C. Paz-Soldan, F. Turco, H. Q. Wang, and D. H. Weisberg, “ Grassy-ELM regime with edge resonant magnetic perturbations in fully noninductive plasmas in the DIII-D tokamak,” Nucl. Fusion 58, 106010 (2018). https://doi.org/10.1088/1741-4326/aad20d, Google ScholarCrossref
- 34. N. M. Ferraro, T. E. Evans, L. L. Lao, R. A. Moyer, R. Nazikian, D. M. Orlov, M. W. Shafer, E. A. Unterberg, M. R. Wade, and A. Wingen, Nucl. Fusion 53, 073042 (2013). https://doi.org/10.1088/0029-5515/53/7/073042, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.