No Access Submitted: 06 June 2018 Accepted: 31 July 2018 Published Online: 17 August 2018
Physics of Plasmas 25, 082513 (2018); https://doi.org/10.1063/1.5043203
A nonlinear, neoclassical, two-fluid theory of the interaction of a single-helicity magnetic island chain with a resonant error-field in a quasi-cylindrical, low-β, tokamak plasma is presented. In particular, the analysis of Fitzpatrick [Phys. Plasmas 25, 042503 (2018)] is generalized to take explicit time dependence into account. Aside from the ability to more accurately treat time-varying problems, the main physical effect that is introduced into the theory by the incorporation of explicit time dependence is ion inertia. The formalism developed in the paper is used to analyze two time-varying problems. First, the interaction of a pre-existing magnetic island chain with a resonant error-field. Second, an error-field-maintained magnetic island chain. The latter problem is of direct relevance to experiments in which deliberately applied, multi-harmonic, resonant magnetic perturbations are used to suppress edge localized modes (ELMs) in tokamak plasmas. Indeed, the predictions of the theory are strikingly similar to data recently obtained from ELM suppression experiments in the DIII-D tokamak [R. Nazikian et al., Nucl. Fusion 58, 106010 (2018)].
This research was funded by the U.S. Department of Energy under Contract No. DE-FG02-04ER-54742.
  1. 1. T. E. Evans, R. A. Moyer, K. H. Burrell, M. E. Fenstermacher, I. Joseph, A. W. Leonard, T. H. Osborne, G. D. Porter, M. J. Schaffer, P. B. Snyder, P. R. Thomas, J. G. Watkins, and W. P. West, Nat. Phys. 2, 419 (2006). https://doi.org/10.1038/nphys312, Google ScholarCrossref, ISI
  2. 2. A. Kirk, E. Nardon, R. Akers, M. Bécoulet, G. De Temmerman, B. Dudson, B. Hnat, Y. Q. Liu, R. Martin, P. Tamain, D. Taylor, and MAST Team, Nucl. Fusion 50, 034008 (2010). https://doi.org/10.1088/0029-5515/50/3/034008, Google ScholarCrossref, ISI
  3. 3. Y. Liang, P. Lomas, I. Nunes, M. Gryaznevich, M. N. A. Beurskens, S. Brezinsek, J. W. Coenen, P. Denner, T. Eich, L. Frassinetti, S. Gerasimov, D. Harting, S. Jachmich, A. Meigs, J. Pearson, M. Rack, S. Saarelma, B. Sieglin, Y. Yang, L. Zeng, and JET-EFDA Contributors, Nucl. Fusion 53, 073036 (2013). https://doi.org/10.1088/0029-5515/53/7/073036, Google ScholarCrossref
  4. 4. Y. M. Jeon, J.-K. Park, S. W. Yoon, W. H. Ko, S. G. Lee, K. D. Lee, G. S. Yun, Y. U. Nam, W. C. Kim, J.-G. Kwak, K. S. Lee, H. K. Kim, and H. L. Yang, Phys. Rev. Lett. 109, 035004 (2012). https://doi.org/10.1103/PhysRevLett.109.035004, Google ScholarCrossref, ISI
  5. 5. P. B. Snyder, R. J. Groebner, J. W. Hughes, T. H. Osborne, M. Beurskens, A. W. Leonard, H. R. Wilson, and X. Q. Xu, Nucl. Fusion 51, 103016 (2011). https://doi.org/10.1088/0029-5515/51/10/103016, Google ScholarCrossref, ISI
  6. 6. M. R. Wade, R. Nazikian, J. S. de Grassie, T. E. Evans, N. M. Ferraro, R. A. Moyer, D. M. Orlov, R. J. Buttery, M. E. Fenstermacher, A. M. Garofalo, M. A. Lanctot, G. R. McKee, T. H. Osborne, M. A. Shafer, W. M. Solomon, P. B. Snyder, W. Suttrop, A. Wingen, E. A. Unterberg, and L. Zeng, Nucl. Fusion 55, 023002 (2015). https://doi.org/10.1088/0029-5515/55/2/023002, Google ScholarCrossref
  7. 7. P. H. Rutherford, Phys. Fluids 16, 1903 (1973). https://doi.org/10.1063/1.1694232, Google ScholarScitation, ISI
  8. 8. P. H. Rutherford, “ Basic physical processes of toroidal fusion plasmas,” in Proceedings of Course and Workshop, Varenna, 1985 (Commission of the European Communities, 1986), Vol. 2, p. 531. Google Scholar
  9. 9. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 022307 (2005). https://doi.org/10.1063/1.1833375, Google ScholarScitation, ISI
  10. 10. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 022308 (2005). https://doi.org/10.1063/1.1833391, Google ScholarScitation, ISI
  11. 11. R. Fitzpatrick, P. G. Watson, and F. L. Waelbroeck, Phys. Plasmas 12, 082510 (2005). https://doi.org/10.1063/1.2001644, Google ScholarScitation, ISI
  12. 12. R. Fitzpatrick, F. L. Waelbroeck, and F. Militello, Phys. Plasmas 13, 122507 (2006). https://doi.org/10.1063/1.2402914, Google ScholarScitation, ISI
  13. 13. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 14, 122502 (2007). https://doi.org/10.1063/1.2811928, Google ScholarScitation, ISI
  14. 14. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 15, 012502 (2008). https://doi.org/10.1063/1.2829757, Google ScholarScitation, ISI
  15. 15. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009). https://doi.org/10.1063/1.3191719, Google ScholarScitation, ISI
  16. 16. R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Controlled Fusion 52, 055006 (2010). https://doi.org/10.1088/0741-3335/52/5/055006, Google ScholarCrossref
  17. 17. R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010). https://doi.org/10.1063/1.3432720, Google ScholarScitation, ISI
  18. 18. R. Fitzpatrick, Phys. Plasmas 23, 052506 (2016). https://doi.org/10.1063/1.4948559, Google ScholarScitation, ISI
  19. 19. R. Fitzpatrick, Phys. Plasmas 25, 042503 (2018). https://doi.org/10.1063/1.5022685, Google ScholarScitation, ISI
  20. 20. R. D. Hazeltine, M. Kotscheneuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985). https://doi.org/10.1063/1.865255, Google ScholarScitation, ISI
  21. 21. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). https://doi.org/10.1063/1.1706761, Google ScholarScitation, ISI
  22. 22. R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993). https://doi.org/10.1088/0029-5515/33/7/I08, Google ScholarCrossref, ISI
  23. 23. J. A. Wesson, Tokamaks, 3rd ed. ( Oxford University Press, 2004). Google Scholar
  24. 24. R. J. La Haye, C. C. Petty, E. J. Strait, F. L. Waelbroeck, and H. R. Wilson, Phys. Plasmas 10, 3644 (2003). https://doi.org/10.1063/1.1602452, Google ScholarScitation, ISI
  25. 25. P. Buratti, E. Alessi, M. Baruzzo, A. Casolari, E. Giovannozzi, C. Giroud, N. Hawkes, S. Menmuir, G. Purcella, and J. Contributors, Nucl. Fusion 56, 076004 (2016). https://doi.org/10.1088/0029-5515/56/7/076004, Google ScholarCrossref
  26. 26. Wolfram|Alpha, http://www.wolframalpha.com/input/?i=integrate+x\%5E(4*n-8)\%2F(1\%2Bx\%5E4)\%5En for Wolfram Alpha LLC, 2009. Google Scholar
  27. 27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition ( Academic Press, 1980), Eq. (3.613.1). Google Scholar
  28. 28. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition ( Academic Press, 1980), Eqs. (2.553.2) and (2.553.3). Google Scholar
  29. 29. A. J. Cole, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 99, 065001 (2007). https://doi.org/10.1103/PhysRevLett.99.065001, Google ScholarCrossref
  30. 30. R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998). https://doi.org/10.1063/1.873000, Google ScholarScitation, ISI
  31. 31. R. Fitzpatrick, Plasma Phys. Controlled Fusion 54, 094002 (2012). https://doi.org/10.1088/0741-3335/54/9/094002, Google ScholarCrossref
  32. 32. R. Fitzpatrick, Phys. Plasmas 21, 092513 (2014). https://doi.org/10.1063/1.4896244, Google ScholarScitation, ISI
  33. 33. R. Nazikian, C. C. Petty, A. Bortolon, X. Chen, D. Eldon, T. E. Evans, B. A. Grierson, N. M. Ferraro, S. R. Haskey, M. Knolker, C. Lasnier, N. C. Logan, R. A. Moyer, D. Orlov, T. H. Osborne, P. B. Synder, C. Paz-Soldan, F. Turco, H. Q. Wang, and D. H. Weisberg, “ Grassy-ELM regime with edge resonant magnetic perturbations in fully noninductive plasmas in the DIII-D tokamak,” Nucl. Fusion 58, 106010 (2018). https://doi.org/10.1088/1741-4326/aad20d, Google ScholarCrossref
  34. 34. N. M. Ferraro, T. E. Evans, L. L. Lao, R. A. Moyer, R. Nazikian, D. M. Orlov, M. W. Shafer, E. A. Unterberg, M. R. Wade, and A. Wingen, Nucl. Fusion 53, 073042 (2013). https://doi.org/10.1088/0029-5515/53/7/073042, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.