No Access Submitted: 28 March 2018 Accepted: 30 July 2018 Published Online: 22 August 2018
Review of Scientific Instruments 89, 083112 (2018); https://doi.org/10.1063/1.5031145
more...View AffiliationsView Contributors
  • Prateek Puri
  • Michael Mills
  • Elizabeth P. West
  • Christian Schneider
  • Eric R. Hudson
We demonstrate an ion shuttling technique for high-resolution control of atom-ion collision energy by translating an ion held within a radio-frequency trap through a magneto-optical atom trap. The technique is demonstrated both experimentally and through numerical simulations, with the experimental results indicating control of ion kinetic energies from 0.05 to 1 K with a fractional resolution of ∼10 and the simulations demonstrating that kinetic energy control up to 120 K with a maximum predicted resolution of ∼100 is possible, offering order-of-magnitude improvements over most alternative techniques. Finally, we perform a proof-of-principle chemistry experiment using this technique and outline how the method may be refined in the future and applied to the study of molecular ion chemistry.
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650604. This work was also supported by the National Science Foundation (Grant No. PHY-1255526) and Army Research Office (Grant Nos. W911NF-15-1-0121 and W911NF-14-1-0378).
  1. 1. A. Bergeat, J. Onvlee, C. Naulin, A. van der Avoird, and M. Costes, Nat. Chem. 7, 349 (2015). https://doi.org/10.1038/nchem.2204, Google ScholarCrossref, ISI
  2. 2. A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski, M. Pawlak, L. M. C. Janssen, N. Moiseyev, S. Y. T. van de Meerakker, A. van der Avoird, C. P. Koch, and E. Narevicius, Nat. Phys. 13, 35 (2016). https://doi.org/10.1038/nphys3904, Google ScholarCrossref
  3. 3. K. B. Gubbels, S. Y. T. van de Meerakker, G. C. Groenenboom, G. Meijer, and A. van der Avoird, J. Chem. Phys. 136, 074301 (2012). https://doi.org/10.1063/1.3683219, Google ScholarScitation, ISI
  4. 4. Y. T. Lee, J. D. McDonald, P. R. LeBreton, and D. R. Herschbach, Rev. Sci. Instrum. 40, 1402 (1969). https://doi.org/10.1063/1.1683809, Google ScholarScitation, ISI
  5. 5. Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Nat. Chem. 7, 921 (2015). https://doi.org/10.1038/nchem.2359, Google ScholarCrossref
  6. 6. A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius, and E. Narevicius, Science 338, 234 (2012). https://doi.org/10.1126/science.1229141, Google ScholarCrossref, ISI
  7. 7. C. Amarasinghe and A. G. Suits, J. Phys. Chem. Lett. 8, 5153 (2017). https://doi.org/10.1021/acs.jpclett.7b02378, Google ScholarCrossref, ISI
  8. 8. S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird, G. C. Groenenboom, and S. Y. T. van de Meerakker, Science 350, 787 (2015). https://doi.org/10.1126/science.aad2356, Google ScholarCrossref, ISI
  9. 9. J. B. Kim, M. L. Weichman, T. F. Sjolander, D. M. Neumark, J. Kłos, M. H. Alexander, and D. E. Manolopoulos, Science 349, 510 (2015). https://doi.org/10.1126/science.aac6939, Google ScholarCrossref, ISI
  10. 10. W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D. H. Zhang, Science 327, 1501 (2010). https://doi.org/10.1126/science.1185694, Google ScholarCrossref, ISI
  11. 11. N. Indriolo, T. Oka, T. R. Geballe, and B. J. McCall, Astrophys. J. 711, 1338 (2010). https://doi.org/10.1088/0004-637x/711/2/1338, Google ScholarCrossref
  12. 12. T. P. Snow and V. M. Bierbaum, Annu. Rev. Anal. Chem. 1, 229 (2008). https://doi.org/10.1146/annurev.anchem.1.031207.112907, Google ScholarCrossref
  13. 13. M. J. McEwan, G. B. I. Scott, N. G. Adams, L. M. Babcock, R. Terzieva, and E. Herbst, Astrophys. J. 513, 287 (1999). https://doi.org/10.1086/306861, Google ScholarCrossref
  14. 14. V. S. Reddy, S. Ghanta, and S. Mahapatra, Phys. Rev. Lett. 104, 111102 (2010). https://doi.org/10.1103/physrevlett.104.111102, Google ScholarCrossref
  15. 15. D. Smith and P. Španěl, Int. Rev. Phys. Chem. 15, 231 (1996). https://doi.org/10.1080/01442359609353183, Google ScholarCrossref
  16. 16. P. B. Armentrout, J. Anal. At. Spectrom. 19, 571 (2004). https://doi.org/10.1039/b313133e, Google ScholarCrossref
  17. 17. B. R. Rowe and J. B. Marquette, Int. J. Mass Spectrom. Ion Processes 80, 239 (1987). https://doi.org/10.1016/0168-1176(87)87033-7, Google ScholarCrossref
  18. 18. B. R. Rowe and D. C. Parent, Planet. Space Sci. 43, 105 (1995). https://doi.org/10.1016/0032-0633(94)00094-8, Google ScholarCrossref
  19. 19. I. W. M. Smith and B. R. Rowe, Acc. Chem. Res. 33, 261 (2000). https://doi.org/10.1021/ar990099i, Google ScholarCrossref, ISI
  20. 20. D. Zhang and S. Willitsch, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (The Royal Society of Chemistry, 2018), pp. 496–536. Google Scholar
  21. 21. C. Zipkes, L. Ratschbacher, S. Palzer, C. Sias, and M. Köhl, J. Phys.: Conf. Ser. 264, 012019 (2011). https://doi.org/10.1088/1742-6596/264/1/012019, Google ScholarCrossref
  22. 22. A. Härter and J. H. Denschlag, Contemp. Phys. 55, 33 (2014). https://doi.org/10.1080/00107514.2013.854618, Google ScholarCrossref, ISI
  23. 23. Y.-P. Chang, K. Dlugolecki, J. Küpper, D. Rösch, D. Wild, and S. Willitsch, Science 342, 98 (2013). https://doi.org/10.1126/science.1242271, Google ScholarCrossref, ISI
  24. 24. S. T. Sullivan, W. G. Rellergert, S. Kotochigova, and E. R. Hudson, Phys. Rev. Lett. 109, 223002 (2012). https://doi.org/10.1103/physrevlett.109.223002, Google ScholarCrossref
  25. 25. F. H. J. Hall and S. Willitsch, Phys. Rev. Lett. 109, 233202 (2012). https://doi.org/10.1103/physrevlett.109.233202, Google ScholarCrossref
  26. 26. W. G. Rellergert, S. T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S. J. Schowalter, and E. R. Hudson, Phys. Rev. Lett. 107, 243201 (2011). https://doi.org/10.1103/physrevlett.107.243201, Google ScholarCrossref
  27. 27. L. Ratschbacher, C. Zipkes, C. Sias, and M. Köhl, Nat. Phys. 8, 649 (2012). https://doi.org/10.1038/nphys2373, Google ScholarCrossref
  28. 28. P. Puri, M. Mills, C. Schneider, I. Simbotin, J. A. Montgomery, R. Côté, A. G. Suits, and E. R. Hudson, Science 357, 1370 (2017). https://doi.org/10.1126/science.aan4701, Google ScholarCrossref, ISI
  29. 29. C. Zipkes, S. Palzer, C. Sias, and M. Köhl, Nature 464, 388 (2010). https://doi.org/10.1038/nature08865, Google ScholarCrossref, ISI
  30. 30. C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and M. Köhl, Phys. Rev. Lett. 105, 133201 (2010). https://doi.org/10.1103/physrevlett.105.133201, Google ScholarCrossref
  31. 31. S. Haze, S. Hata, M. Fujinaga, and T. Mukaiyama, Phys. Rev. A 87, 052715 (2013). https://doi.org/10.1103/physreva.87.052715, Google ScholarCrossref
  32. 32. A. T. Grier, M. Cetina, F. Oručević, and V. Vuletić, Phys. Rev. Lett. 102, 223201 (2009). https://doi.org/10.1103/physrevlett.102.223201, Google ScholarCrossref, ISI
  33. 33. K. Chen, S. T. Sullivan, and E. R. Hudson, Phys. Rev. Lett. 112, 143009 (2014). https://doi.org/10.1103/physrevlett.112.143009, Google ScholarCrossref
  34. 34. W. G. Rellergert, S. T. Sullivan, S. J. Schowalter, S. Kotochigova, K. Chen, and E. R. Hudson, Nature 495, 490 (2012). https://doi.org/10.1038/nature11937, Google ScholarCrossref
  35. 35. I. Rouse and S. Willitsch, Phys. Rev. Lett. 118, 143401 (2017). https://doi.org/10.1103/physrevlett.118.143401, Google ScholarCrossref
  36. 36. T. Cremers, S. Chefdeville, N. Janssen, E. Sweers, S. Koot, P. Claus, and S. Y. T. van de Meerakker, Phys. Rev. A 95, 043415 (2017). https://doi.org/10.1103/physreva.95.043415, Google ScholarCrossref
  37. 37. K. Dulitz, A. Tauschinsky, and T. P. Softley, New J. Phys. 17, 035005 (2015). https://doi.org/10.1088/1367-2630/17/3/035005, Google ScholarCrossref
  38. 38. J. M. Oldham, M. T. Bell, L. D. Harper, and T. P. Softley, in 67th International Symposium on Molecular Spectroscopy, 2012. Google Scholar
  39. 39. L. P. Parazzoli, N. Fitch, D. S. Lobser, and H. J. Lewandowski, New J. Phys. 11, 055031 (2009). https://doi.org/10.1088/1367-2630/11/5/055031, Google ScholarCrossref
  40. 40. P. Eberle, A. D. Dörfler, C. von Planta, K. Ravi, and S. Willitsch, ChemPhysChem 17, 3769 (2016). https://doi.org/10.1002/cphc.201600643, Google ScholarCrossref
  41. 41. S. J. Schowalter, A. J. Dunning, K. Chen, P. Puri, C. Schneider, and E. R. Hudson, Nat. Comm. 7, 12448 (2016). https://doi.org/10.1038/ncomms12448, Google ScholarCrossref
  42. 42. S. J. Schowalter, K. Chen, W. G. Rellergert, S. T. Sullivan, and E. R. Hudson, Rev. Sci. Instrum. 83, 043103 (2012). https://doi.org/10.1063/1.3700216, Google ScholarScitation, ISI
  43. 43. C. Schneider, S. J. Schowalter, P. Yu, and E. R. Hudson, Int. J. Mass Spectrom. 394, 1 (2016). https://doi.org/10.1016/j.ijms.2015.10.006, Google ScholarCrossref
  44. 44. D. Hucul, M. Yeo, S. Olmschenk, C. Monroe, W. K. Hensinger, and J. Rabchuk, Quantum Inf. Comput. 8, 501 (2008). Google Scholar
  45. 45. R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 102, 153002 (2009). https://doi.org/10.1103/physrevlett.102.153002, Google ScholarCrossref
  46. 46. R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. H. Wesenberg, M. J. Biercuk, D. Leibfried, and D. J. Wineland, Phys. Rev. A 84, 032314 (2011). https://doi.org/10.1103/physreva.84.032314, Google ScholarCrossref
  47. 47. R. Reichle, D. Leibfried, R. Blakestad, J. Britton, J. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D. Wineland, Fortschr. Phys. 54, 666 (2006). https://doi.org/10.1002/prop.200610326, Google ScholarCrossref, ISI
  48. 48. H. J. Metcalf and P. van der Straten, J. Opt. Soc. Am. B 20, 887 (2003). https://doi.org/10.1364/josab.20.000887, Google ScholarCrossref
  49. 49. G. Patil, “Weighted distributions,” in Wiley StatsRef: Statistics Reference Online (American Cancer Society, 2014). Google ScholarCrossref
  50. 50. D. A. Dahl, Int. J. Mass Spectrom. 200, 3 (2000). https://doi.org/10.1016/s1387-3806(00)00305-5, Google ScholarCrossref, ISI
  51. 51. Z. Zuo, M. Fukusen, Y. Tamaki, T. Watanabe, Y. Nakagawa, and K. Nakagawa, Opt. Express 17, 22898 (2009). https://doi.org/10.1364/oe.17.022898, Google ScholarCrossref
  52. 52. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys. 83, 5025 (1998). https://doi.org/10.1063/1.367318, Google ScholarScitation, ISI
  53. 53. J. Keller, H. L. Partner, T. Burgermeister, and T. E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015). https://doi.org/10.1063/1.4930037, Google ScholarScitation, ISI
  54. 54. H. Song, A. Li, and H. Guo, J. Phys. Chem. A 120, 4742 (2016). https://doi.org/10.1021/acs.jpca.5b11574, Google ScholarCrossref, ISI
  55. 55. H. da Silva, Jr., M. Raoult, M. Aymar, and O. Dulieu, New J. Phys. 17, 045015 (2015). https://doi.org/10.1088/1367-2630/17/4/045015, Google ScholarCrossref
  56. 56. R. Oswald, “Velocity control of trapped ions for transport quantum logic gates,” M.Sc. thesis, Swiss Federal Institute of Technology Zurich, 2015. Google Scholar
  57. 57. H. A. Fürst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero, T. Calarco, F. Schmidt-Kaler, K. Singer, and C. P. Koch, New J. Phys. 16, 075007 (2014). https://doi.org/10.1088/1367-2630/16/7/075007, Google ScholarCrossref
  58. 58. L. E. de Clercq, H.-Y. Lo, M. Marinelli, D. Nadlinger, R. Oswald, V. Negnevitsky, D. Kienzler, B. Keitch, and J. P. Home, Phys. Rev. Lett. 116, 080502 (2016). https://doi.org/10.1103/physrevlett.116.080502, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.