No Access Submitted: 23 March 2018 Accepted: 25 June 2018 Published Online: 19 July 2018
J. Chem. Phys. 149, 034308 (2018); https://doi.org/10.1063/1.5030621
more...View Affiliations
View Contributors
  • F. Holzmeier
  • T. J. A. Wolf
  • C. Gienger
  • I. Wagner
  • J. Bozek
  • S. Nandi
  • C. Nicolas
  • I. Fischer
  • M. Gühr
  • R. F. Fink
In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a′ resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between −8 and −9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.
The experiments were performed at the PLEIADES beamline at Synchrotron SOLEIL, France. We thank E. Robert for technical assistance and the SOLEIL staff for stable operation of the equipment and storage ring during the experiments. We acknowledge E. Kukk, M.-N. Piancastelli, R. Püttner, and O. Travnikova for fruitful discussion. M. Gühr acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy and NB under Grant No. DE-SC0012376. M. Gühr is funded by a Lichtenberg Professorship from the Volkswagen foundation. I. Fischer acknowledges DFG, Project Nos. FI 575/7-3 and 13-1, for funding. T. J. A. Wolf thanks the German National Academy of Sciences Leopoldina for a fellowship (Grant No. LPDS2013-14).
  1. 1. G. Herzberg and C. Reid, Discuss. Faraday Soc. 9, 92 (1950). https://doi.org/10.1039/df9500900092, Google ScholarCrossref
  2. 2. D. A. Steiner, K. A. Wishah, S. R. Polo, and T. K. McCubbin, J. Mol. Spectrosc. 76, 341 (1979). https://doi.org/10.1016/0022-2852(79)90233-9, Google ScholarCrossref
  3. 3. K. Yamada, J. Mol. Spectrosc. 79, 323 (1980). https://doi.org/10.1016/0022-2852(80)90217-9, Google ScholarCrossref
  4. 4. W. S. Drozdoski, A. P. Baronavski, and J. R. McDonald, Chem. Phys. Lett. 64, 421 (1979). https://doi.org/10.1016/0009-2614(79)80213-4, Google ScholarCrossref
  5. 5. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, Chem. Phys. 65, 197 (1982). https://doi.org/10.1016/0301-0104(82)85068-4, Google ScholarCrossref, ISI
  6. 6. S. Yu, S. Su, D. Dai, K. Yuan, and X. Yang, J. Phys. Chem. A 117, 13564 (2013). https://doi.org/10.1021/jp407556k, Google ScholarCrossref, ISI
  7. 7. S. Yu, S. Su, Y. Dorenkamp, A. M. Wodtke, D. Dai, K. Yuan, and X. Yang, J. Phys. Chem. A 117, 11673 (2013). https://doi.org/10.1021/jp312793k, Google ScholarCrossref
  8. 8. Z. Zhang, Z. Chen, C. Huang, Y. Chen, D. Dai, D. H. Parker, and X. Yang, J. Phys. Chem. A 118, 2413 (2014). https://doi.org/10.1021/jp500625m, Google ScholarCrossref
  9. 9. B. Ruscic and J. Berkowitz, J. Chem. Phys. 100, 4498 (1994). https://doi.org/10.1063/1.466281, Google ScholarScitation, ISI
  10. 10. J. H. D. Eland, Philos. Trans. R. Soc., A 268, 87 (1970). https://doi.org/10.1098/rsta.1970.0063, Google ScholarCrossref
  11. 11. S. Cradock, E. A. V. Ebsworth, and J. D. Murdoch, J. Chem. Soc., Faraday Trans. 2 68, 86 (1972). https://doi.org/10.1039/f29726800086, Google ScholarCrossref
  12. 12. S. Wilsey, S. E. Thomas, and J. H. D. Eland, Chem. Phys. 258, 21 (2000). https://doi.org/10.1016/s0301-0104(00)00160-9, Google ScholarCrossref
  13. 13. F. Holzmeier, M. Lang, I. Fischer, X. Tang, B. Cunha de Miranda, C. Romanzin, C. Alcaraz, and P. Hemberger, J. Chem. Phys. 142, 184306 (2015). https://doi.org/10.1063/1.4920951, Google ScholarScitation, ISI
  14. 14. W. Kosmus, B. M. Rode, and E. Nachbaur, J. Electron Spectrosc. Relat. Phenom. 1, 408 (1972). https://doi.org/10.1016/0368-2048(72)80042-2, Google ScholarCrossref
  15. 15. R. A. Perry and D. L. Siebers, Nature 324, 657 (1986). https://doi.org/10.1038/324657a0, Google ScholarCrossref
  16. 16. B. G. Wicke, K. A. Grady, and J. W. Ratcliffe, Nature 338, 492 (1989). https://doi.org/10.1038/338492a0, Google ScholarCrossref
  17. 17. R. K. Lyon and J. A. Cole, Combust. Flame 82, 435 (1990). https://doi.org/10.1016/0010-2180(90)90013-h, Google ScholarCrossref
  18. 18. J. A. Miller and C. T. Bowman, Int. J. Chem. Kinet. 23, 289 (1991). https://doi.org/10.1002/kin.550230403, Google ScholarCrossref
  19. 19. N. Marcelino, S. Brünken, J. Cernicharo, D. Quan, E. Roueff, E. Herbst, and P. Thaddeus, Astron. Astrophys. 516, A105 (2010). https://doi.org/10.1051/0004-6361/200913806, Google ScholarCrossref
  20. 20. R. Feifel and M. N. Piancastelli, J. Electron Spectrosc. Relat. Phenom. 183, 10 (2011). https://doi.org/10.1016/j.elspec.2010.04.011, Google ScholarCrossref
  21. 21. K. Ueda, J. Phys. B: At., Mol. Opt. Phys. 36, R1 (2003). https://doi.org/10.1088/0953-4075/36/4/201, Google ScholarCrossref
  22. 22. M. N. Piancastelli, R. F. Fink, R. Feifel, M. Bässler, S. L. Sorensen, C. Miron, H. Wang, I. Hjelte, O. Björneholm, A. Ausmees, S. Svensson, P. Salek, F. K. Gel’mukhanov, and H. Ågren, J. Phys. B: At., Mol. Opt. Phys. 33, 1819 (2000). https://doi.org/10.1088/0953-4075/33/9/311, Google ScholarCrossref
  23. 23. P. Sałek, R. F. Fink, F. Gel’mukhanov, M. N. Piancastelli, R. Feifer, M. Bässler, S. L. Sorensen, C. Miron, H. Wang, I. Hjelte, O. Björneholm, A. Ausmees, S. Svensson, and H. Ågren, Phys. Rev. A 62, 062506 (2000). https://doi.org/10.1103/physreva.62.062506, Google ScholarCrossref
  24. 24. W. E. Moddeman, T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971). https://doi.org/10.1063/1.1676411, Google ScholarScitation, ISI
  25. 25. A. Hiltunen, S. Aksela, G. Víkor, S. Ricz, Á Kövér, and B. Sulik, Nucl. Instrum. Methods Phys. Res., Sect. B 154, 267 (1999). https://doi.org/10.1016/s0168-583x(99)00049-x, Google ScholarCrossref
  26. 26. Y. Hikosaka, Y. Shibata, K. Soejima, H. Iwayama, and E. Shigemasa, Chem. Phys. Lett. 603, 46 (2014). https://doi.org/10.1016/j.cplett.2014.04.030, Google ScholarCrossref
  27. 27. V. Feyer, P. Bolognesi, M. Coreno, K. C. Prince, L. Avaldi, L. Storchi, and F. Tarantelli, J. Chem. Phys. 123, 224306 (2005). https://doi.org/10.1063/1.2137311, Google ScholarScitation, ISI
  28. 28. H. Ågren, J. Chem. Phys. 75, 1267 (1981). https://doi.org/10.1063/1.442176, Google ScholarScitation, ISI
  29. 29. G. R. Wight and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 3, 191 (1974). https://doi.org/10.1016/0368-2048(74)80010-1, Google ScholarCrossref
  30. 30. Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, Phys. Rev. A 44, 1848 (1991). https://doi.org/10.1103/physreva.44.1848, Google ScholarCrossref
  31. 31. T. K. Sham, B. X. Yang, J. Kirz, and J. S. Tse, Phys. Rev. A 40, 652 (1989). https://doi.org/10.1103/physreva.40.652, Google ScholarCrossref
  32. 32. J.-I. Adachi, N. Kosugi, and A. Yagishita, J. Phys. B: At., Mol. Opt. Phys. 38, R127 (2005). https://doi.org/10.1088/0953-4075/38/11/r01, Google ScholarCrossref
  33. 33. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 94, 11 (1991). https://doi.org/10.1063/1.460386, Google ScholarScitation, ISI
  34. 34. T. Porwol, G. Illing, H. J. Freund, H. Kuhlenbeck, M. Neumann, S. Bernstorff, W. Braun, W. von Niessen, and C. M. Liegener, Phys. Rev. B 41, 10510 (1990). https://doi.org/10.1103/physrevb.41.10510, Google ScholarCrossref
  35. 35. M. N. Piancastelli, A. Kivimäki, B. Kempgens, M. Neeb, K. Maier, and A. M. Bradshaw, Chem. Phys. Lett. 274, 13 (1997). https://doi.org/10.1016/s0009-2614(97)00665-9, Google ScholarCrossref
  36. 36. E. Kukk, J. D. Bozek, and N. Berrah, Phys. Rev. A 62, 032708 (2000). https://doi.org/10.1103/physreva.62.032708, Google ScholarCrossref
  37. 37. P. Morin, M. Simon, C. Miron, N. Leclercq, E. Kukk, J. D. Bozek, and N. Berrah, Phys. Rev. A 61, 050701 (2000). https://doi.org/10.1103/physreva.61.050701, Google ScholarCrossref
  38. 38. V. Sekushin, R. Püttner, R. F. Fink, M. Martins, Y. H. Jiang, H. Aksela, S. Aksela, and G. Kaindl, J. Chem. Phys. 137, 044310 (2012). https://doi.org/10.1063/1.4734310, Google ScholarScitation, ISI
  39. 39. Y. Muramatsu, Y. Shimizu, H. Yoshida, K. Okada, N. Saito, I. Koyano, H. Tanaka, and K. Ueda, Chem. Phys. Lett. 330, 91 (2000). https://doi.org/10.1016/s0009-2614(00)01086-1, Google ScholarCrossref
  40. 40. J. D. Bozek, N. Saito, and I. H. Suzuki, Phys. Rev. A 51, 4563 (1995). https://doi.org/10.1103/physreva.51.4563, Google ScholarCrossref, ISI
  41. 41. N. Saito, K. Ueda, M. Simon, K. Okada, Y. Shimizu, H. Chiba, Y. Senba, H. Okumura, H. Ohashi, Y. Tamenori, S. Nagaoka, A. Hiraya, H. Yoshida, E. Ishiguro, T. Ibuki, I. H. Suzuki, and I. Koyano, Phys. Rev. A 62, 042503 (2000). https://doi.org/10.1103/physreva.62.042503, Google ScholarCrossref
  42. 42. U. Alkemper, R. Hörnig, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 29, 35 (1996). https://doi.org/10.1088/0953-4075/29/1/009, Google ScholarCrossref
  43. 43. U. Ankerhold, B. Esser, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 30, 1207 (1997). https://doi.org/10.1088/0953-4075/30/5/015, Google ScholarCrossref
  44. 44. B. Esser, U. Ankerhold, N. Anders, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 30, 1191 (1997). https://doi.org/10.1088/0953-4075/30/5/014, Google ScholarCrossref
  45. 45. M. Yamazaki, J. Adachi, T. Teramoto, and A. Yagishita, J. Phys. B: At., Mol. Opt. Phys. 46, 115101 (2013). https://doi.org/10.1088/0953-4075/46/11/115101, Google ScholarCrossref
  46. 46. R. F. Fink, A. Eschner, M. Magnuson, O. Björneholm, I. Hjelte, C. Miron, M. Bassler, S. Svensson, M. N. Piancastelli, and S. L. Sorensen, J. Phys. B: At., Mol. Opt. Phys. 39, L269 (2006). https://doi.org/10.1088/0953-4075/39/12/l03, Google ScholarCrossref
  47. 47. S. E. Wheeler, A. C. Simmonett, and H. F. Schaefer, J. Phys. Chem. A 111, 4551 (2007). https://doi.org/10.1021/jp0712046, Google ScholarCrossref
  48. 48. O. Travnikova, C. Miron, M. Bässler, R. Feifel, M. N. Piancastelli, S. L. Sorensen, and S. Svensson, J. Electron Spectrosc. Relat. Phenom. 174, 100 (2009). https://doi.org/10.1016/j.elspec.2009.08.003, Google ScholarCrossref
  49. 49. T. Wolf, F. Holzmeier, I. Wagner, N. Berrah, C. Bostedt, J. D. Bozek, P. Bucksbaum, R. Coffee, J. Cryan, J. P. Farrell, R. Feifel, T. Martinez, B. McFarland, M. Mucke, S. Nandi, F. Tarantelli, I. Fischer, and M. Gühr, Appl. Sci. 7, 681 (2017). https://doi.org/10.3390/app7070681, Google ScholarCrossref
  50. 50. See https://www.synchrotron-soleil.fr/en/beamlines/pleiades for PLEIADES beamline. Google Scholar
  51. 51. R. A. Ashby and R. L. Werner, J. Mol. Spectrosc. 18, 184 (1965). https://doi.org/10.1016/0022-2852(65)90074-3, Google ScholarCrossref
  52. 52. TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://turbomole.com. Google Scholar
  53. 53. R. Fink, J. Electron Spectrosc. Relat. Phenom. 76, 295 (1995). https://doi.org/10.1016/0368-2048(95)02469-7, Google ScholarCrossref
  54. 54. R. F. Fink, S. L. Sorensen, A. N. de Brito, A. Ausmees, and S. Svensson, J. Chem. Phys. 112, 6666 (2000). https://doi.org/10.1063/1.481241, Google ScholarScitation, ISI
  55. 55. J. H. D. Eland, R. F. Fink, P. Linusson, L. Hedin, S. Plogmaker, and R. Feifel, Phys. Chem. Chem. Phys. 13, 18428 (2011). https://doi.org/10.1039/c1cp21654f, Google ScholarCrossref
  56. 56. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
  57. 57. U. Hergenhahn, A. Rüdel, K. Maier, A. M. Bradshaw, R. F. Fink, and A. T. Wen, Chem. Phys. 289, 57 (2003). https://doi.org/10.1016/S0301-0104(02)00795-4, Google ScholarCrossref
  58. 58. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett. 35, 330 (1975). https://doi.org/10.1016/0009-2614(75)85615-6, Google ScholarCrossref
  59. 59. H. Ågren, S. Svensson, and U. I. Wahlgren, Chem. Phys. Lett. 35, 336 (1975). https://doi.org/10.1016/0009-2614(75)85616-8, Google ScholarCrossref
  60. 60. E. J. McGuire, Phys. Rev. 185, 1 (1969). https://doi.org/10.1103/physrev.185.1, Google ScholarCrossref
  61. 61. R. Fink and V. Staemmler, Theor. Chim. Acta 87, 129 (1993). https://doi.org/10.1007/bf01113534, Google ScholarCrossref
  62. 62. L. S. Cederbaum and F. Tarantelli, J. Chem. Phys. 98, 9691 (1993). https://doi.org/10.1063/1.464348, Google ScholarScitation, ISI
  63. 63. L. S. Cederbaum and F. Tarantelli, J. Chem. Phys. 99, 5871 (1993). https://doi.org/10.1063/1.465940, Google ScholarScitation, ISI
  64. 64. E. Antonsson, M. Patanen, C. Nicolas, S. Benkoula, J. J. Neville, V. L. Sukhorukov, J. D. Bozek, P. V. Demekhin, and C. Miron, Phys. Rev. A 92, 042506 (2015). https://doi.org/10.1103/physreva.92.042506, Google ScholarCrossref
  65. 65. M. Neeb, J. E. Rubensson, M. Biermann, W. Eberhardt, K. J. Randall, J. Feldhaus, A. L. D. Kilcoyne, A. M. Bradshaw, Z. Xu, P. D. Johnson, and Y. Ma, Chem. Phys. Lett. 212, 205 (1993). https://doi.org/10.1016/0009-2614(93)87131-l, Google ScholarCrossref
  66. 66. L. Ungier and T. D. Thomas, J. Chem. Phys. 82, 3146 (1985). https://doi.org/10.1063/1.448212, Google ScholarScitation, ISI
  67. 67. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 90, 3479 (1989). https://doi.org/10.1063/1.455857, Google ScholarScitation, ISI
  68. 68. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 92, 7171 (1990). https://doi.org/10.1063/1.458256, Google ScholarScitation, ISI
  69. 69.Auger intensities are given in lifetime width contributions; i.e., the sum of these contributions for one core-hole state corresponds to the lifetime width due to Auger decay.
  1. © 2018 Author(s). Published by AIP Publishing.