ABSTRACT
In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a′ resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between −8 and −9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.
ACKNOWLEDGMENTS
The experiments were performed at the PLEIADES beamline at Synchrotron SOLEIL, France. We thank E. Robert for technical assistance and the SOLEIL staff for stable operation of the equipment and storage ring during the experiments. We acknowledge E. Kukk, M.-N. Piancastelli, R. Püttner, and O. Travnikova for fruitful discussion. M. Gühr acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy and NB under Grant No. DE-SC0012376. M. Gühr is funded by a Lichtenberg Professorship from the Volkswagen foundation. I. Fischer acknowledges DFG, Project Nos. FI 575/7-3 and 13-1, for funding. T. J. A. Wolf thanks the German National Academy of Sciences Leopoldina for a fellowship (Grant No. LPDS2013-14).
- 1. G. Herzberg and C. Reid, Discuss. Faraday Soc. 9, 92 (1950). https://doi.org/10.1039/df9500900092, Google ScholarCrossref
- 2. D. A. Steiner, K. A. Wishah, S. R. Polo, and T. K. McCubbin, J. Mol. Spectrosc. 76, 341 (1979). https://doi.org/10.1016/0022-2852(79)90233-9, Google ScholarCrossref
- 3. K. Yamada, J. Mol. Spectrosc. 79, 323 (1980). https://doi.org/10.1016/0022-2852(80)90217-9, Google ScholarCrossref
- 4. W. S. Drozdoski, A. P. Baronavski, and J. R. McDonald, Chem. Phys. Lett. 64, 421 (1979). https://doi.org/10.1016/0009-2614(79)80213-4, Google ScholarCrossref
- 5. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, Chem. Phys. 65, 197 (1982). https://doi.org/10.1016/0301-0104(82)85068-4, Google ScholarCrossref, ISI
- 6. S. Yu, S. Su, D. Dai, K. Yuan, and X. Yang, J. Phys. Chem. A 117, 13564 (2013). https://doi.org/10.1021/jp407556k, Google ScholarCrossref, ISI
- 7. S. Yu, S. Su, Y. Dorenkamp, A. M. Wodtke, D. Dai, K. Yuan, and X. Yang, J. Phys. Chem. A 117, 11673 (2013). https://doi.org/10.1021/jp312793k, Google ScholarCrossref
- 8. Z. Zhang, Z. Chen, C. Huang, Y. Chen, D. Dai, D. H. Parker, and X. Yang, J. Phys. Chem. A 118, 2413 (2014). https://doi.org/10.1021/jp500625m, Google ScholarCrossref
- 9. B. Ruscic and J. Berkowitz, J. Chem. Phys. 100, 4498 (1994). https://doi.org/10.1063/1.466281, Google ScholarScitation, ISI
- 10. J. H. D. Eland, Philos. Trans. R. Soc., A 268, 87 (1970). https://doi.org/10.1098/rsta.1970.0063, Google ScholarCrossref
- 11. S. Cradock, E. A. V. Ebsworth, and J. D. Murdoch, J. Chem. Soc., Faraday Trans. 2 68, 86 (1972). https://doi.org/10.1039/f29726800086, Google ScholarCrossref
- 12. S. Wilsey, S. E. Thomas, and J. H. D. Eland, Chem. Phys. 258, 21 (2000). https://doi.org/10.1016/s0301-0104(00)00160-9, Google ScholarCrossref
- 13. F. Holzmeier, M. Lang, I. Fischer, X. Tang, B. Cunha de Miranda, C. Romanzin, C. Alcaraz, and P. Hemberger, J. Chem. Phys. 142, 184306 (2015). https://doi.org/10.1063/1.4920951, Google ScholarScitation, ISI
- 14. W. Kosmus, B. M. Rode, and E. Nachbaur, J. Electron Spectrosc. Relat. Phenom. 1, 408 (1972). https://doi.org/10.1016/0368-2048(72)80042-2, Google ScholarCrossref
- 15. R. A. Perry and D. L. Siebers, Nature 324, 657 (1986). https://doi.org/10.1038/324657a0, Google ScholarCrossref
- 16. B. G. Wicke, K. A. Grady, and J. W. Ratcliffe, Nature 338, 492 (1989). https://doi.org/10.1038/338492a0, Google ScholarCrossref
- 17. R. K. Lyon and J. A. Cole, Combust. Flame 82, 435 (1990). https://doi.org/10.1016/0010-2180(90)90013-h, Google ScholarCrossref
- 18. J. A. Miller and C. T. Bowman, Int. J. Chem. Kinet. 23, 289 (1991). https://doi.org/10.1002/kin.550230403, Google ScholarCrossref
- 19. N. Marcelino, S. Brünken, J. Cernicharo, D. Quan, E. Roueff, E. Herbst, and P. Thaddeus, Astron. Astrophys. 516, A105 (2010). https://doi.org/10.1051/0004-6361/200913806, Google ScholarCrossref
- 20. R. Feifel and M. N. Piancastelli, J. Electron Spectrosc. Relat. Phenom. 183, 10 (2011). https://doi.org/10.1016/j.elspec.2010.04.011, Google ScholarCrossref
- 21. K. Ueda, J. Phys. B: At., Mol. Opt. Phys. 36, R1 (2003). https://doi.org/10.1088/0953-4075/36/4/201, Google ScholarCrossref
- 22. M. N. Piancastelli, R. F. Fink, R. Feifel, M. Bässler, S. L. Sorensen, C. Miron, H. Wang, I. Hjelte, O. Björneholm, A. Ausmees, S. Svensson, P. Salek, F. K. Gel’mukhanov, and H. Ågren, J. Phys. B: At., Mol. Opt. Phys. 33, 1819 (2000). https://doi.org/10.1088/0953-4075/33/9/311, Google ScholarCrossref
- 23. P. Sałek, R. F. Fink, F. Gel’mukhanov, M. N. Piancastelli, R. Feifer, M. Bässler, S. L. Sorensen, C. Miron, H. Wang, I. Hjelte, O. Björneholm, A. Ausmees, S. Svensson, and H. Ågren, Phys. Rev. A 62, 062506 (2000). https://doi.org/10.1103/physreva.62.062506, Google ScholarCrossref
- 24. W. E. Moddeman, T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971). https://doi.org/10.1063/1.1676411, Google ScholarScitation, ISI
- 25. A. Hiltunen, S. Aksela, G. Víkor, S. Ricz, Á Kövér, and B. Sulik, Nucl. Instrum. Methods Phys. Res., Sect. B 154, 267 (1999). https://doi.org/10.1016/s0168-583x(99)00049-x, Google ScholarCrossref
- 26. Y. Hikosaka, Y. Shibata, K. Soejima, H. Iwayama, and E. Shigemasa, Chem. Phys. Lett. 603, 46 (2014). https://doi.org/10.1016/j.cplett.2014.04.030, Google ScholarCrossref
- 27. V. Feyer, P. Bolognesi, M. Coreno, K. C. Prince, L. Avaldi, L. Storchi, and F. Tarantelli, J. Chem. Phys. 123, 224306 (2005). https://doi.org/10.1063/1.2137311, Google ScholarScitation, ISI
- 28. H. Ågren, J. Chem. Phys. 75, 1267 (1981). https://doi.org/10.1063/1.442176, Google ScholarScitation, ISI
- 29. G. R. Wight and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 3, 191 (1974). https://doi.org/10.1016/0368-2048(74)80010-1, Google ScholarCrossref
- 30. Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, Phys. Rev. A 44, 1848 (1991). https://doi.org/10.1103/physreva.44.1848, Google ScholarCrossref
- 31. T. K. Sham, B. X. Yang, J. Kirz, and J. S. Tse, Phys. Rev. A 40, 652 (1989). https://doi.org/10.1103/physreva.40.652, Google ScholarCrossref
- 32. J.-I. Adachi, N. Kosugi, and A. Yagishita, J. Phys. B: At., Mol. Opt. Phys. 38, R127 (2005). https://doi.org/10.1088/0953-4075/38/11/r01, Google ScholarCrossref
- 33. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 94, 11 (1991). https://doi.org/10.1063/1.460386, Google ScholarScitation, ISI
- 34. T. Porwol, G. Illing, H. J. Freund, H. Kuhlenbeck, M. Neumann, S. Bernstorff, W. Braun, W. von Niessen, and C. M. Liegener, Phys. Rev. B 41, 10510 (1990). https://doi.org/10.1103/physrevb.41.10510, Google ScholarCrossref
- 35. M. N. Piancastelli, A. Kivimäki, B. Kempgens, M. Neeb, K. Maier, and A. M. Bradshaw, Chem. Phys. Lett. 274, 13 (1997). https://doi.org/10.1016/s0009-2614(97)00665-9, Google ScholarCrossref
- 36. E. Kukk, J. D. Bozek, and N. Berrah, Phys. Rev. A 62, 032708 (2000). https://doi.org/10.1103/physreva.62.032708, Google ScholarCrossref
- 37. P. Morin, M. Simon, C. Miron, N. Leclercq, E. Kukk, J. D. Bozek, and N. Berrah, Phys. Rev. A 61, 050701 (2000). https://doi.org/10.1103/physreva.61.050701, Google ScholarCrossref
- 38. V. Sekushin, R. Püttner, R. F. Fink, M. Martins, Y. H. Jiang, H. Aksela, S. Aksela, and G. Kaindl, J. Chem. Phys. 137, 044310 (2012). https://doi.org/10.1063/1.4734310, Google ScholarScitation, ISI
- 39. Y. Muramatsu, Y. Shimizu, H. Yoshida, K. Okada, N. Saito, I. Koyano, H. Tanaka, and K. Ueda, Chem. Phys. Lett. 330, 91 (2000). https://doi.org/10.1016/s0009-2614(00)01086-1, Google ScholarCrossref
- 40. J. D. Bozek, N. Saito, and I. H. Suzuki, Phys. Rev. A 51, 4563 (1995). https://doi.org/10.1103/physreva.51.4563, Google ScholarCrossref, ISI
- 41. N. Saito, K. Ueda, M. Simon, K. Okada, Y. Shimizu, H. Chiba, Y. Senba, H. Okumura, H. Ohashi, Y. Tamenori, S. Nagaoka, A. Hiraya, H. Yoshida, E. Ishiguro, T. Ibuki, I. H. Suzuki, and I. Koyano, Phys. Rev. A 62, 042503 (2000). https://doi.org/10.1103/physreva.62.042503, Google ScholarCrossref
- 42. U. Alkemper, R. Hörnig, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 29, 35 (1996). https://doi.org/10.1088/0953-4075/29/1/009, Google ScholarCrossref
- 43. U. Ankerhold, B. Esser, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 30, 1207 (1997). https://doi.org/10.1088/0953-4075/30/5/015, Google ScholarCrossref
- 44. B. Esser, U. Ankerhold, N. Anders, and F. v. Busch, J. Phys. B: At., Mol. Opt. Phys. 30, 1191 (1997). https://doi.org/10.1088/0953-4075/30/5/014, Google ScholarCrossref
- 45. M. Yamazaki, J. Adachi, T. Teramoto, and A. Yagishita, J. Phys. B: At., Mol. Opt. Phys. 46, 115101 (2013). https://doi.org/10.1088/0953-4075/46/11/115101, Google ScholarCrossref
- 46. R. F. Fink, A. Eschner, M. Magnuson, O. Björneholm, I. Hjelte, C. Miron, M. Bassler, S. Svensson, M. N. Piancastelli, and S. L. Sorensen, J. Phys. B: At., Mol. Opt. Phys. 39, L269 (2006). https://doi.org/10.1088/0953-4075/39/12/l03, Google ScholarCrossref
- 47. S. E. Wheeler, A. C. Simmonett, and H. F. Schaefer, J. Phys. Chem. A 111, 4551 (2007). https://doi.org/10.1021/jp0712046, Google ScholarCrossref
- 48. O. Travnikova, C. Miron, M. Bässler, R. Feifel, M. N. Piancastelli, S. L. Sorensen, and S. Svensson, J. Electron Spectrosc. Relat. Phenom. 174, 100 (2009). https://doi.org/10.1016/j.elspec.2009.08.003, Google ScholarCrossref
- 49. T. Wolf, F. Holzmeier, I. Wagner, N. Berrah, C. Bostedt, J. D. Bozek, P. Bucksbaum, R. Coffee, J. Cryan, J. P. Farrell, R. Feifel, T. Martinez, B. McFarland, M. Mucke, S. Nandi, F. Tarantelli, I. Fischer, and M. Gühr, Appl. Sci. 7, 681 (2017). https://doi.org/10.3390/app7070681, Google ScholarCrossref
- 50. See https://www.synchrotron-soleil.fr/en/beamlines/pleiades for PLEIADES beamline. Google Scholar
- 51. R. A. Ashby and R. L. Werner, J. Mol. Spectrosc. 18, 184 (1965). https://doi.org/10.1016/0022-2852(65)90074-3, Google ScholarCrossref
- 52. TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://turbomole.com. Google Scholar
- 53. R. Fink, J. Electron Spectrosc. Relat. Phenom. 76, 295 (1995). https://doi.org/10.1016/0368-2048(95)02469-7, Google ScholarCrossref
- 54. R. F. Fink, S. L. Sorensen, A. N. de Brito, A. Ausmees, and S. Svensson, J. Chem. Phys. 112, 6666 (2000). https://doi.org/10.1063/1.481241, Google ScholarScitation, ISI
- 55. J. H. D. Eland, R. F. Fink, P. Linusson, L. Hedin, S. Plogmaker, and R. Feifel, Phys. Chem. Chem. Phys. 13, 18428 (2011). https://doi.org/10.1039/c1cp21654f, Google ScholarCrossref
- 56. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
- 57. U. Hergenhahn, A. Rüdel, K. Maier, A. M. Bradshaw, R. F. Fink, and A. T. Wen, Chem. Phys. 289, 57 (2003). https://doi.org/10.1016/S0301-0104(02)00795-4, Google ScholarCrossref
- 58. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett. 35, 330 (1975). https://doi.org/10.1016/0009-2614(75)85615-6, Google ScholarCrossref
- 59. H. Ågren, S. Svensson, and U. I. Wahlgren, Chem. Phys. Lett. 35, 336 (1975). https://doi.org/10.1016/0009-2614(75)85616-8, Google ScholarCrossref
- 60. E. J. McGuire, Phys. Rev. 185, 1 (1969). https://doi.org/10.1103/physrev.185.1, Google ScholarCrossref
- 61. R. Fink and V. Staemmler, Theor. Chim. Acta 87, 129 (1993). https://doi.org/10.1007/bf01113534, Google ScholarCrossref
- 62. L. S. Cederbaum and F. Tarantelli, J. Chem. Phys. 98, 9691 (1993). https://doi.org/10.1063/1.464348, Google ScholarScitation, ISI
- 63. L. S. Cederbaum and F. Tarantelli, J. Chem. Phys. 99, 5871 (1993). https://doi.org/10.1063/1.465940, Google ScholarScitation, ISI
- 64. E. Antonsson, M. Patanen, C. Nicolas, S. Benkoula, J. J. Neville, V. L. Sukhorukov, J. D. Bozek, P. V. Demekhin, and C. Miron, Phys. Rev. A 92, 042506 (2015). https://doi.org/10.1103/physreva.92.042506, Google ScholarCrossref
- 65. M. Neeb, J. E. Rubensson, M. Biermann, W. Eberhardt, K. J. Randall, J. Feldhaus, A. L. D. Kilcoyne, A. M. Bradshaw, Z. Xu, P. D. Johnson, and Y. Ma, Chem. Phys. Lett. 212, 205 (1993). https://doi.org/10.1016/0009-2614(93)87131-l, Google ScholarCrossref
- 66. L. Ungier and T. D. Thomas, J. Chem. Phys. 82, 3146 (1985). https://doi.org/10.1063/1.448212, Google ScholarScitation, ISI
- 67. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 90, 3479 (1989). https://doi.org/10.1063/1.455857, Google ScholarScitation, ISI
- 68. T. X. Carroll and T. D. Thomas, J. Chem. Phys. 92, 7171 (1990). https://doi.org/10.1063/1.458256, Google ScholarScitation, ISI
- 69.Auger intensities are given in lifetime width contributions; i.e., the sum of these contributions for one core-hole state corresponds to the lifetime width due to Auger decay.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.