ABSTRACT
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
ACKNOWLEDGMENTS
DIII-D data shown in this paper can be obtained in the digital format by following the links at https://fusion.gat.com/global/D3D\_DMP. The authors thank J. Kulchar, D. Taussig, M. Austin, S. Haskey, B. Grierson, R. Groebner, and Y. Zhu for diagnostic support, as well as N. Commaux and A. Wingen for their assistance. This material was based upon the work supported in part by the U.S. Department of Energy under Grant Nos. DE-FC02–04ER54698, DE-FG02–07ER54917, DE-AC05–00OR22725, DE-FC02–99ER54512, and DE-SC0016268.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
REFERENCES
- 1. T. C. Hender et al., the ITPA MHD and Magnet, Nucl. Fusion 47, S128 (2007). https://doi.org/10.1088/0029-5515/47/6/S03, Google ScholarCrossref, ISI
- 2. M. Lehnen et al., J. Nucl. Mater. 463, 39 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.075, Google ScholarCrossref, ISI
- 3. E. M. Hollmann, P. B. Aleynikov, T. Fülöp, D. A. Humphreys, V. A. Izzo, M. Lehnen, V. E. Lukash, G. Papp, G. Pautasso, F. Saint-Laurent, and J. A. Snipes, Phys. Plasmas 22, 021802 (2015). https://doi.org/10.1063/1.4901251, Google ScholarScitation, ISI
- 4. A. H. Boozer, Phys. Plasmas 22, 032504 (2015). https://doi.org/10.1063/1.4913582, Google ScholarScitation, ISI
- 5. J. W. Connor and R. J. Hastie, Nucl. Fusion 15, 415 (1975). https://doi.org/10.1088/0029-5515/15/3/007, Google ScholarCrossref, ISI
- 6. M. N. Rosenbluth and S. V. Putvinski, Nucl. Fusion 37, 1355 (1997). https://doi.org/10.1088/0029-5515/37/10/I03, Google ScholarCrossref, ISI
- 7. J. R. Martin-Solis, J. D. Alvarez, R. Sanchez, and B. Esposito, Phys. Plasmas 5, 2370 (1998). https://doi.org/10.1063/1.872911, Google ScholarScitation, ISI
- 8. F. Andersson, P. Helander, and L.-G. Eriksson, Phys. Plasmas 8, 5221 (2001). https://doi.org/10.1063/1.1418242, Google ScholarScitation, ISI
- 9. P. B. Aleynikov and B. N. Breizman, Phys. Rev. Lett. 114, 155001 (2015). https://doi.org/10.1103/PhysRevLett.114.155001, Google ScholarCrossref, ISI
- 10. P. B. Aleynikov, K. Aleynikova, B. N. Breizman, G. T. A. Huijsmans, S. V. Konovalov, S. V. Putvinski, and V. Zhogolev, in Proceedings of 25th IAEA Fusion Energy Conference, St. Petersburg, Russia (2014), p. TH/P3–38. Google Scholar
- 11. E. Hirvijoki, I. Pusztai, J. Decker, O. Embréus, A. Stahl, and T. Fülöp, J. Plasma Phys. 81, 475810502 (2015); e-print arXiv:1502.03333. https://doi.org/10.1017/S0022377815000513, Google ScholarCrossref
- 12. A. Stahl, E. Hirvijoki, J. Decker, O. Embréus, and T. Fülöp, Phys. Rev. Lett. 114, 115002 (2015). https://doi.org/10.1103/PhysRevLett.114.115002, Google ScholarCrossref
- 13. C. Liu, D. P. Brennan, A. H. Boozer, and A. Bhattacharjee, Phys. Plasmas 23, 010702 (2016). https://doi.org/10.1063/1.4938510, Google ScholarScitation, ISI
- 14. J. Decker, E. Hirvijoki, O. Embréus, Y. Peysson, A. Stahl, I. Pusztai, and T. Fülöp, Plasma Phys. Controlled Fusion 58, 025016 (2016). https://doi.org/10.1088/0741-3335/58/2/025016, Google ScholarCrossref
- 15. C. Liu, D. P. Brennan, A. H. Boozer, and A. Bhattacharjee, Plasma Phys. Controlled Fusion 59, 024003 (2017). https://doi.org/10.1088/1361-6587/59/2/024003, Google ScholarCrossref
- 16. Z. Guo, C. J. Mcdevitt, and X. Tang, Plasma Phys. Controlled Fusion 59, 044003 (2017). https://doi.org/10.1088/1361-6587/aa5952, Google ScholarCrossref
- 17. J. R. Martin-Solis, R. Sánchez, and B. Esposito, Phys. Rev. Lett. 105, 185002 (2010). https://doi.org/10.1103/PhysRevLett.105.185002, Google ScholarCrossref
- 18. C. Paz-Soldan, N. W. Eidietis, R. S. Granetz, E. M. Hollmann, R. A. Moyer, N. A. Crocker, A. Wingen, and Y. Zhu, Phys. Plasmas 21, 022514 (2014). https://doi.org/10.1063/1.4866912, Google ScholarScitation, ISI
- 19. R. S. Granetz, B. Esposito, J. H. Kim, R. Koslowski, M. Lehnen, J. R. Martin-Solis, C. Paz-Soldan, T. Rhee, J. C. Wesley, L. Zeng, and I. M. Group, Phys. Plasmas 21, 072506 (2014). https://doi.org/10.1063/1.4886802, Google ScholarScitation, ISI
- 20. E. M. Hollmann, P. B. Parks, D. A. Humphreys, N. H. Brooks, N. Commaux, N. W. Eidietis, T. E. Evans, R. Isler, A. N. James, T. C. Jernigan, J. Munoz, E. J. Strait, C. Tsui, J. C. Wesley, and J. H. Yu, Nucl. Fusion 51, 103026 (2011). https://doi.org/10.1088/0029-5515/51/10/103026, Google ScholarCrossref, ISI
- 21. E. M. Hollmann, P. B. Parks, N. Commaux, N. W. Eidietis, R. A. Moyer, D. Shiraki, M. E. Austin, C. J. Lasnier, C. Paz-Soldan, and D. L. Rudakov, Phys. Plasmas 22, 056108 (2015). https://doi.org/10.1063/1.4921149, Google ScholarScitation, ISI
- 22. C. Paz-Soldan, C. M. Cooper, P. B. Aleynikov, D. C. Pace, N. W. Eidietis, D. P. Brennan, R. S. Granetz, E. M. Hollmann, C. Liu, A. Lvovskiy, R. A. Moyer, and D. Shiraki, Phys. Rev. Lett. 118, 255002 (2017). https://doi.org/10.1103/PhysRevLett.118.255002, Google ScholarCrossref
- 23. D. C. Pace, C. M. Cooper, D. Taussig, N. W. Eidietis, E. M. Hollmann, V. Riso, and M. A. V. Zeeland, Rev. Sci. Instrum. 87, 043507 (2016). https://doi.org/10.1063/1.4945566, Google ScholarScitation, ISI
- 24. C. M. Cooper, D. C. Pace, C. Paz-Soldan, N. Commaux, N. W. Eidietis, E. M. Hollmann, and D. Shiraki, Rev. Sci. Instrum. 87, 11E602 (2016). https://doi.org/10.1063/1.4961288, Google ScholarScitation, ISI
- 25. R. Jaspers, N. Cardozo, and K. H. Finken, Phys. Rev. Lett. 72, 4093 (1994). https://doi.org/10.1103/PhysRevLett.72.4093, Google ScholarCrossref
- 26. J. H. Yu, E. M. Hollmann, N. Commaux, N. W. Eidietis, D. A. Humphreys, A. N. James, T. C. Jernigan, and R. A. Moyer, Phys. Plasmas 20, 042113 (2013). https://doi.org/10.1063/1.4801738, Google ScholarScitation, ISI
- 27. R. J. Zhou, I. M. Pankratov, L. Q. Hu, M. Xu, and J. H. Yang, Phys. Plasmas 21, 063302 (2014). https://doi.org/10.1063/1.4881469, Google ScholarScitation, ISI
- 28. L. Carbajal, D. Del-Castillo-Negrete, D. Spong, S. Seal, and L. R. Baylor, Phys. Plasmas 24, 042512 (2017). https://doi.org/10.1063/1.4981209, Google ScholarScitation, ISI
- 29. M. Hoppe, O. Embréus, R. A. Tinguely, R. S. Granetz, A. Stahl, and T. Fülöp, Nucl. Fusion 58, 026032 (2018). https://doi.org/10.1088/1741-4326/aa9abb, Google ScholarCrossref
- 30. H. Dreicer, Phys. Rev. 115, 238 (1959). https://doi.org/10.1103/PhysRev.115.238, Google ScholarCrossref, ISI
- 31. C. Paz-Soldan, R. J. La Haye, D. Shiraki, R. J. Buttery, N. W. Eidietis, E. M. Hollmann, R. A. Moyer, J. E. Boom, and I. T. Chapman, Nucl. Fusion 56, 056010 (2016). https://doi.org/10.1088/0029-5515/56/5/056010, Google ScholarCrossref
- 32. L.-G. Eriksson and P. Helander, Comput. Phys. Commun. 154, 175 (2003). https://doi.org/10.1016/S0010-4655(03)00293-5, Google ScholarCrossref, ISI
- 33. P. Helander, Collisional Transport in Magnetized Plasmas ( Cambridge University Press, 2002). Google Scholar
- 34. G. Papp, M. Drevlak, T. Fülöp, and P. Helander, Nucl. Fusion 51, 43004 (2011). https://doi.org/10.1088/0029-5515/51/4/043004, Google ScholarCrossref
- 35. P. B. Parks, M. N. Rosenbluth, and S. Putvinski, Phys. Plasmas 6, 2523 (1999). https://doi.org/10.1063/1.873524, Google ScholarScitation, ISI
- 36. P. B. Aleynikov and B. N. Breizman, Nucl. Fusion 57, 046009 (2017). https://doi.org/10.1088/1741-4326/aa5895, Google ScholarCrossref
- 37. J. R. Martin-Solis, A. Loarte, and M. Lehnen, Nucl. Fusion 57, 066025 (2017). https://doi.org/10.1088/1741-4326/aa6939, Google ScholarCrossref
- 38. V. Zhogolev and S. V. Konovalov, VANT Ser. Nucl. Fusion 37, 71 (2014). Google Scholar
- 39. L. Hesslow, O. Embréus, A. Stahl, T. C. Dubois, G. Papp, S. L. Newton, and T. Fülöp, Phys. Rev. Lett. 118, 255001 (2017); https://doi.org/10.1103/PhysRevLett.118.255001 e-print arXiv:1705.08638. Google ScholarCrossref
- 40. E. M. Hollmann, N. Commaux, N. W. Eidietis, C. J. Lasnier, D. L. Rudakov, D. Shiraki, C. Cooper, J. R. Martin-Solis, P. B. Parks, and C. Paz-Soldan, Phys. Plasmas 24, 062505 (2017). https://doi.org/10.1063/1.4985086, Google ScholarScitation, ISI
- 41. C. Reux, V. Plyusnin, B. Alper, D. Alves, B. Bazylev, and E. Belonohy, Nucl. Fusion 55, 093013 (2015). https://doi.org/10.1088/0029-5515/55/9/093013, Google ScholarCrossref
- 42. P. Helander, L.-G. Eriksson, and F. Andersson, Phys. Plasmas 7, 4106 (2000). https://doi.org/10.1063/1.1289892, Google ScholarScitation, ISI
- 43. H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959). https://doi.org/10.1103/RevModPhys.31.920, Google ScholarCrossref
- 44. Y. Peysson and F. Imbeaux, Rev. Sci. Instrum. 70, 3987 (1999). https://doi.org/10.1063/1.1150025, Google ScholarScitation, ISI
- 45. M. Salewski, M. Nocente, G. Gorini, A. Jacobsen, V. Kiptily, S. Korsholm, F. Leipold, J. Madsen, D. Moseev, S. Nielsen, J. Rasmussen, M. Stejner, and M. Tardocchi, Nucl. Fusion 56, 046009 (2016). https://doi.org/10.1088/0029-5515/56/4/046009, Google ScholarCrossref, ISI
- 46. L. Stagner and W. W. Heidbrink, Phys. Plasmas 24, 092505 (2017). https://doi.org/10.1063/1.4990391, Google ScholarScitation, ISI
- 47. A. E. Shevelev, E. M. Khilkevitch, V. G. Kiptily, I. N. Chugunov, D. B. Gin, D. N. Doinikov, V. O. Naidenov, A. E. Litvinov, and I. A. Polunovskii, Nucl. Fusion 53, 123004 (2013). https://doi.org/10.1088/0029-5515/53/12/123004, Google ScholarCrossref
- 48. A. E. Shevelev, E. M. Khilkevitch, S. I. Lashkul, V. V. Rozhdestvensky, and A. B. Altukhov, Nucl. Instrum. Methods Phys. Res. A 830, 102 (2016). https://doi.org/10.1016/j.nima.2016.05.075, Google ScholarCrossref
- 49. C. Liu, E. Hirvijoki, G-y. Fu, D. P. Brennan, A. Bhattacharjee, and C. Paz-Soldan, arXiv:1801.01827 (2018). Google Scholar
- 50. P. B. Aleynikov and B. N. Breizman, Nucl. Fusion 55, 043014 (2015). https://doi.org/10.1088/0029-5515/55/4/043014, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.