No Access Submitted: 30 January 2018 Accepted: 07 March 2018 Published Online: 22 March 2018
Physics of Plasmas 25, 056105 (2018); https://doi.org/10.1063/1.5024223
more...View Affiliations
View Contributors
  • C. Paz-Soldan
  • C. M. Cooper
  • P. Aleynikov
  • N. W. Eidietis
  • A. Lvovskiy
  • D. C. Pace
  • D. P. Brennan
  • E. M. Hollmann
  • C. Liu
  • R. A. Moyer
  • D. Shiraki
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
DIII-D data shown in this paper can be obtained in the digital format by following the links at https://fusion.gat.com/global/D3D\_DMP. The authors thank J. Kulchar, D. Taussig, M. Austin, S. Haskey, B. Grierson, R. Groebner, and Y. Zhu for diagnostic support, as well as N. Commaux and A. Wingen for their assistance. This material was based upon the work supported in part by the U.S. Department of Energy under Grant Nos. DE-FC02–04ER54698, DE-FG02–07ER54917, DE-AC05–00OR22725, DE-FC02–99ER54512, and DE-SC0016268.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
  1. 1. T. C. Hender et al., the ITPA MHD and Magnet, Nucl. Fusion 47, S128 (2007). https://doi.org/10.1088/0029-5515/47/6/S03, Google ScholarCrossref, ISI
  2. 2. M. Lehnen et al., J. Nucl. Mater. 463, 39 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.075, Google ScholarCrossref, ISI
  3. 3. E. M. Hollmann, P. B. Aleynikov, T. Fülöp, D. A. Humphreys, V. A. Izzo, M. Lehnen, V. E. Lukash, G. Papp, G. Pautasso, F. Saint-Laurent, and J. A. Snipes, Phys. Plasmas 22, 021802 (2015). https://doi.org/10.1063/1.4901251, Google ScholarScitation, ISI
  4. 4. A. H. Boozer, Phys. Plasmas 22, 032504 (2015). https://doi.org/10.1063/1.4913582, Google ScholarScitation, ISI
  5. 5. J. W. Connor and R. J. Hastie, Nucl. Fusion 15, 415 (1975). https://doi.org/10.1088/0029-5515/15/3/007, Google ScholarCrossref, ISI
  6. 6. M. N. Rosenbluth and S. V. Putvinski, Nucl. Fusion 37, 1355 (1997). https://doi.org/10.1088/0029-5515/37/10/I03, Google ScholarCrossref, ISI
  7. 7. J. R. Martin-Solis, J. D. Alvarez, R. Sanchez, and B. Esposito, Phys. Plasmas 5, 2370 (1998). https://doi.org/10.1063/1.872911, Google ScholarScitation, ISI
  8. 8. F. Andersson, P. Helander, and L.-G. Eriksson, Phys. Plasmas 8, 5221 (2001). https://doi.org/10.1063/1.1418242, Google ScholarScitation, ISI
  9. 9. P. B. Aleynikov and B. N. Breizman, Phys. Rev. Lett. 114, 155001 (2015). https://doi.org/10.1103/PhysRevLett.114.155001, Google ScholarCrossref, ISI
  10. 10. P. B. Aleynikov, K. Aleynikova, B. N. Breizman, G. T. A. Huijsmans, S. V. Konovalov, S. V. Putvinski, and V. Zhogolev, in Proceedings of 25th IAEA Fusion Energy Conference, St. Petersburg, Russia (2014), p. TH/P3–38. Google Scholar
  11. 11. E. Hirvijoki, I. Pusztai, J. Decker, O. Embréus, A. Stahl, and T. Fülöp, J. Plasma Phys. 81, 475810502 (2015); e-print arXiv:1502.03333. https://doi.org/10.1017/S0022377815000513, Google ScholarCrossref
  12. 12. A. Stahl, E. Hirvijoki, J. Decker, O. Embréus, and T. Fülöp, Phys. Rev. Lett. 114, 115002 (2015). https://doi.org/10.1103/PhysRevLett.114.115002, Google ScholarCrossref
  13. 13. C. Liu, D. P. Brennan, A. H. Boozer, and A. Bhattacharjee, Phys. Plasmas 23, 010702 (2016). https://doi.org/10.1063/1.4938510, Google ScholarScitation, ISI
  14. 14. J. Decker, E. Hirvijoki, O. Embréus, Y. Peysson, A. Stahl, I. Pusztai, and T. Fülöp, Plasma Phys. Controlled Fusion 58, 025016 (2016). https://doi.org/10.1088/0741-3335/58/2/025016, Google ScholarCrossref
  15. 15. C. Liu, D. P. Brennan, A. H. Boozer, and A. Bhattacharjee, Plasma Phys. Controlled Fusion 59, 024003 (2017). https://doi.org/10.1088/1361-6587/59/2/024003, Google ScholarCrossref
  16. 16. Z. Guo, C. J. Mcdevitt, and X. Tang, Plasma Phys. Controlled Fusion 59, 044003 (2017). https://doi.org/10.1088/1361-6587/aa5952, Google ScholarCrossref
  17. 17. J. R. Martin-Solis, R. Sánchez, and B. Esposito, Phys. Rev. Lett. 105, 185002 (2010). https://doi.org/10.1103/PhysRevLett.105.185002, Google ScholarCrossref
  18. 18. C. Paz-Soldan, N. W. Eidietis, R. S. Granetz, E. M. Hollmann, R. A. Moyer, N. A. Crocker, A. Wingen, and Y. Zhu, Phys. Plasmas 21, 022514 (2014). https://doi.org/10.1063/1.4866912, Google ScholarScitation, ISI
  19. 19. R. S. Granetz, B. Esposito, J. H. Kim, R. Koslowski, M. Lehnen, J. R. Martin-Solis, C. Paz-Soldan, T. Rhee, J. C. Wesley, L. Zeng, and I. M. Group, Phys. Plasmas 21, 072506 (2014). https://doi.org/10.1063/1.4886802, Google ScholarScitation, ISI
  20. 20. E. M. Hollmann, P. B. Parks, D. A. Humphreys, N. H. Brooks, N. Commaux, N. W. Eidietis, T. E. Evans, R. Isler, A. N. James, T. C. Jernigan, J. Munoz, E. J. Strait, C. Tsui, J. C. Wesley, and J. H. Yu, Nucl. Fusion 51, 103026 (2011). https://doi.org/10.1088/0029-5515/51/10/103026, Google ScholarCrossref, ISI
  21. 21. E. M. Hollmann, P. B. Parks, N. Commaux, N. W. Eidietis, R. A. Moyer, D. Shiraki, M. E. Austin, C. J. Lasnier, C. Paz-Soldan, and D. L. Rudakov, Phys. Plasmas 22, 056108 (2015). https://doi.org/10.1063/1.4921149, Google ScholarScitation, ISI
  22. 22. C. Paz-Soldan, C. M. Cooper, P. B. Aleynikov, D. C. Pace, N. W. Eidietis, D. P. Brennan, R. S. Granetz, E. M. Hollmann, C. Liu, A. Lvovskiy, R. A. Moyer, and D. Shiraki, Phys. Rev. Lett. 118, 255002 (2017). https://doi.org/10.1103/PhysRevLett.118.255002, Google ScholarCrossref
  23. 23. D. C. Pace, C. M. Cooper, D. Taussig, N. W. Eidietis, E. M. Hollmann, V. Riso, and M. A. V. Zeeland, Rev. Sci. Instrum. 87, 043507 (2016). https://doi.org/10.1063/1.4945566, Google ScholarScitation, ISI
  24. 24. C. M. Cooper, D. C. Pace, C. Paz-Soldan, N. Commaux, N. W. Eidietis, E. M. Hollmann, and D. Shiraki, Rev. Sci. Instrum. 87, 11E602 (2016). https://doi.org/10.1063/1.4961288, Google ScholarScitation, ISI
  25. 25. R. Jaspers, N. Cardozo, and K. H. Finken, Phys. Rev. Lett. 72, 4093 (1994). https://doi.org/10.1103/PhysRevLett.72.4093, Google ScholarCrossref
  26. 26. J. H. Yu, E. M. Hollmann, N. Commaux, N. W. Eidietis, D. A. Humphreys, A. N. James, T. C. Jernigan, and R. A. Moyer, Phys. Plasmas 20, 042113 (2013). https://doi.org/10.1063/1.4801738, Google ScholarScitation, ISI
  27. 27. R. J. Zhou, I. M. Pankratov, L. Q. Hu, M. Xu, and J. H. Yang, Phys. Plasmas 21, 063302 (2014). https://doi.org/10.1063/1.4881469, Google ScholarScitation, ISI
  28. 28. L. Carbajal, D. Del-Castillo-Negrete, D. Spong, S. Seal, and L. R. Baylor, Phys. Plasmas 24, 042512 (2017). https://doi.org/10.1063/1.4981209, Google ScholarScitation, ISI
  29. 29. M. Hoppe, O. Embréus, R. A. Tinguely, R. S. Granetz, A. Stahl, and T. Fülöp, Nucl. Fusion 58, 026032 (2018). https://doi.org/10.1088/1741-4326/aa9abb, Google ScholarCrossref
  30. 30. H. Dreicer, Phys. Rev. 115, 238 (1959). https://doi.org/10.1103/PhysRev.115.238, Google ScholarCrossref, ISI
  31. 31. C. Paz-Soldan, R. J. La Haye, D. Shiraki, R. J. Buttery, N. W. Eidietis, E. M. Hollmann, R. A. Moyer, J. E. Boom, and I. T. Chapman, Nucl. Fusion 56, 056010 (2016). https://doi.org/10.1088/0029-5515/56/5/056010, Google ScholarCrossref
  32. 32. L.-G. Eriksson and P. Helander, Comput. Phys. Commun. 154, 175 (2003). https://doi.org/10.1016/S0010-4655(03)00293-5, Google ScholarCrossref, ISI
  33. 33. P. Helander, Collisional Transport in Magnetized Plasmas ( Cambridge University Press, 2002). Google Scholar
  34. 34. G. Papp, M. Drevlak, T. Fülöp, and P. Helander, Nucl. Fusion 51, 43004 (2011). https://doi.org/10.1088/0029-5515/51/4/043004, Google ScholarCrossref
  35. 35. P. B. Parks, M. N. Rosenbluth, and S. Putvinski, Phys. Plasmas 6, 2523 (1999). https://doi.org/10.1063/1.873524, Google ScholarScitation, ISI
  36. 36. P. B. Aleynikov and B. N. Breizman, Nucl. Fusion 57, 046009 (2017). https://doi.org/10.1088/1741-4326/aa5895, Google ScholarCrossref
  37. 37. J. R. Martin-Solis, A. Loarte, and M. Lehnen, Nucl. Fusion 57, 066025 (2017). https://doi.org/10.1088/1741-4326/aa6939, Google ScholarCrossref
  38. 38. V. Zhogolev and S. V. Konovalov, VANT Ser. Nucl. Fusion 37, 71 (2014). Google Scholar
  39. 39. L. Hesslow, O. Embréus, A. Stahl, T. C. Dubois, G. Papp, S. L. Newton, and T. Fülöp, Phys. Rev. Lett. 118, 255001 (2017); https://doi.org/10.1103/PhysRevLett.118.255001 e-print arXiv:1705.08638. Google ScholarCrossref
  40. 40. E. M. Hollmann, N. Commaux, N. W. Eidietis, C. J. Lasnier, D. L. Rudakov, D. Shiraki, C. Cooper, J. R. Martin-Solis, P. B. Parks, and C. Paz-Soldan, Phys. Plasmas 24, 062505 (2017). https://doi.org/10.1063/1.4985086, Google ScholarScitation, ISI
  41. 41. C. Reux, V. Plyusnin, B. Alper, D. Alves, B. Bazylev, and E. Belonohy, Nucl. Fusion 55, 093013 (2015). https://doi.org/10.1088/0029-5515/55/9/093013, Google ScholarCrossref
  42. 42. P. Helander, L.-G. Eriksson, and F. Andersson, Phys. Plasmas 7, 4106 (2000). https://doi.org/10.1063/1.1289892, Google ScholarScitation, ISI
  43. 43. H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959). https://doi.org/10.1103/RevModPhys.31.920, Google ScholarCrossref
  44. 44. Y. Peysson and F. Imbeaux, Rev. Sci. Instrum. 70, 3987 (1999). https://doi.org/10.1063/1.1150025, Google ScholarScitation, ISI
  45. 45. M. Salewski, M. Nocente, G. Gorini, A. Jacobsen, V. Kiptily, S. Korsholm, F. Leipold, J. Madsen, D. Moseev, S. Nielsen, J. Rasmussen, M. Stejner, and M. Tardocchi, Nucl. Fusion 56, 046009 (2016). https://doi.org/10.1088/0029-5515/56/4/046009, Google ScholarCrossref, ISI
  46. 46. L. Stagner and W. W. Heidbrink, Phys. Plasmas 24, 092505 (2017). https://doi.org/10.1063/1.4990391, Google ScholarScitation, ISI
  47. 47. A. E. Shevelev, E. M. Khilkevitch, V. G. Kiptily, I. N. Chugunov, D. B. Gin, D. N. Doinikov, V. O. Naidenov, A. E. Litvinov, and I. A. Polunovskii, Nucl. Fusion 53, 123004 (2013). https://doi.org/10.1088/0029-5515/53/12/123004, Google ScholarCrossref
  48. 48. A. E. Shevelev, E. M. Khilkevitch, S. I. Lashkul, V. V. Rozhdestvensky, and A. B. Altukhov, Nucl. Instrum. Methods Phys. Res. A 830, 102 (2016). https://doi.org/10.1016/j.nima.2016.05.075, Google ScholarCrossref
  49. 49. C. Liu, E. Hirvijoki, G-y. Fu, D. P. Brennan, A. Bhattacharjee, and C. Paz-Soldan, arXiv:1801.01827 (2018). Google Scholar
  50. 50. P. B. Aleynikov and B. N. Breizman, Nucl. Fusion 55, 043014 (2015). https://doi.org/10.1088/0029-5515/55/4/043014, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.