No Access
Published Online: 12 March 2018
Accepted: February 2018
Chaos 28, 033108 (2018); https://doi.org/10.1063/1.5022737
This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.
The authors thank MeteoSwiss for the accessibility to the data via the IDAWEB server. They also are grateful to the anonymous reviewers for their constructive comments that contributed to improving the paper.
This research was partly supported by the Swiss Government Excellence Scholarships. L.T. thanks the support of Herbette Foundation.
  1. 1. Y. Ashkenazy, D. R. Baker, H. Gildor, and S. Havlin, “ Nonlinearity and multifractality of climate change in the past 420,000 years,” Geophys. Res. Lett. 30, 2146, https://doi.org/10.1029/2003GL018099 (2003). Google ScholarCrossref
  2. 2. A. Biswas, T. B. Zeleke, and B. C. Si, “ Multifractal detrended fluctuation analysis in examining scaling properties of the spatial patterns of soil water storage,” Nonlinear Processes Geophys. 19, 227–238 (2012). https://doi.org/10.5194/npg-19-227-2012, Google ScholarCrossref
  3. 3. R. Calif and F. G. Schmitt, “ Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm,” Nonlinear Processes Geophys. 21, 379–392 (2014). https://doi.org/10.5194/npg-21-379-2014, Google ScholarCrossref
  4. 4. T.-P. Chang, H.-H. Ko, F.-J. Liu, P.-H. Chen, Y.-P. Chang, Y.-H. Liang, H.-Y. Jang, T.-C. Lin, and Y.-H. Chen, “ Fractal dimension of wind speed time series,” Appl. Energy 93, 742–749 (2012). https://doi.org/10.1016/j.apenergy.2011.08.014, Google ScholarCrossref
  5. 5. R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “ STL: A seasonal-trend decomposition procedure based on loess,” J. Off. Stat. 6, 3–73 (1990). Google Scholar
  6. 6. G. D'Amico, F. Petroni, and F. Prattico, “ Wind speed prediction for wind farm applications by extreme value theory and copulas,” Wind Eng. Ind. Aerodyn. J. 145, 229–236 (2015). https://doi.org/10.1016/j.jweia.2015.06.018, Google ScholarCrossref
  7. 7. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ The backbone of the climate network,” Europhys. Lett. 87, 48007 (2009). https://doi.org/10.1209/0295-5075/87/48007, Google ScholarCrossref
  8. 8. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ Complex networks in climate dynamics,” Eur. Phys. J.: Spec. Top. 174, 157–179 (2009). https://doi.org/10.1140/epjst/e2009-01098-2, Google ScholarCrossref
  9. 9. J. Feder, Fractals ( Plenum Press, New York, NY, USA, 1988). Google ScholarCrossref
  10. 10. B. C. L. de Figueirêdo, G. R. Moreira, B. Stosic, and T. Stosic, “ Multifractal analysis of hourly wind speed records in Petrolina, Northeast Brazil,” Rev. Bras. Biomed. 32, 584–598 (2014). Google Scholar
  11. 11. L. Fortuna, S. Nunnari, and G. Guariso, “ Fractal order evidences in wind speed time series,” in ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014 (2014), pp. 1–6. Google ScholarCrossref
  12. 12. U. Frisch and G. Parisi, “ On the singularity structure of fully developed turbulence,” in Turbulence and Predictability in Geophysical Fluid Dynamics and ClimateDynamics, edited by M. Gil , R. Benzi , and G. Parisi ( Elsevier/North-Holland, Amsterdam, 1985), pp. 84–88. Google Scholar
  13. 13. A. P. Garcia-Marin, J. Estévez, F. J. Jiménez-Hornero, and J. L. Ayuso-Munoz, “ Multifractal analysis of validated wind speed time series,” Chaos 23, 013133 (2013). https://doi.org/10.1063/1.4793781, Google ScholarScitation, CAS
  14. 14. A. Gozolchiani, K. Yamasaki, O. Gazit, and S. Havlin, “ Pattern of climate network blinking links follows el Niño events,” Europhys. Lett. 83, 28005 (2008). https://doi.org/10.1209/0295-5075/83/28005, Google ScholarCrossref
  15. 15. H. Kantz, D. Holstein, M. Ragwitz, and N. K. Vitanov, “ Markov chain model for turbulent wind speed data,” in Proceedings of the VIII Latin American Workshop on Nonlinear Phenomena [Phys. A 342, 315–321 (2004)]. Google ScholarCrossref
  16. 16. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. Stanley, “ Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002). https://doi.org/10.1016/S0378-4371(02)01383-3, Google ScholarCrossref
  17. 17. R. G. Kavasseri and R. Nagarajan, “ A multifractal description of wind speed records,” Chaos, Solitons Fractals 24, 165–173 (2005). https://doi.org/10.1016/j.chaos.2004.09.004, Google ScholarCrossref
  18. 18. M. J. Kirkby, “ The fractal geometry of nature. Benoit B. Mandelbrot. W. H. Freeman and Co,” Earth Surf. Processes Landforms 8, 406–406 (1983). https://doi.org/10.1002/esp.3290080415, Google ScholarCrossref
  19. 19. M. Laib, L. Telesca, and M. Kanevski, MFDFA: MultiFractal Detrended Fluctuation Analysis for Time Series (2017), R package version 0.1.0. Google Scholar
  20. 20. A. Marshak, A. Davis, R. Cahalan, and W. Wiscombe, “ Bounded cascade models as nonstationary multifractals,” Phys. Rev. E 49, 55–69 (1994). https://doi.org/10.1103/PhysRevE.49.55, Google ScholarCrossref, CAS
  21. 21. J. L. Moreno, Who Shall Survive? A New Approach to the Problem of Human Interrelations ( Nervous and Mental Disease Publishing, 1934), p. 854. Google ScholarCrossref
  22. 22. M. de Oliveira Santos, T. Stosic, and B. D. Stosic, “ Long-term correlations in hourly wind speed records in Pernambuco, Brazil,” Physica A 391, 1546–1552 (2012). https://doi.org/10.1016/j.physa.2011.08.041, Google ScholarCrossref
  23. 23. P. Oswiecimka, S. Drozdz, J. Kwapien, and A. Gorski, “ Effect of detrending on multifractal characteristics,” in Proceedings of the 6th Polish Symposium of Physics in Economy and Social Sciences (FENS2012), Gdansk, Poland [Acta Phys. Pol., A 123, 597–603 (2013)]. Google ScholarCrossref
  24. 24. E. Parzen, “ Quantile spectral analysis and long-memory time series,” J. Appl. Probab. 23, 41–54 (1986). https://doi.org/10.2307/3214341, Google ScholarCrossref
  25. 25. C. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “ Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos 5, 82–87 (1995). https://doi.org/10.1063/1.166141, Google ScholarScitation, CAS
  26. 26. M. Piacquadio and A. de la Barra, “ Multifractal analysis of wind velocity data,” Energy Sustainable Dev. 22, 48–56 (2014). https://doi.org/10.1016/j.esd.2014.03.001, Google ScholarCrossref
  27. 27. J. O. Pierini, M. Lovallo, and L. Telesca, “ Visibility graph analysis of wind speed records measured in central Argentina,” Physica A 391, 5041–5048 (2012). https://doi.org/10.1016/j.physa.2012.05.049, Google ScholarCrossref
  28. 28. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2017). Google Scholar
  29. 29. D. Schertzer and S. Lovejoy, “ Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes,” J. Geophys. Res.: Atmos. 92, 9693–9714, https://doi.org/10.1029/JD092iD08p09693 (1987). Google ScholarCrossref
  30. 30. K. Steinhaeuser, N. V. Chawla, and A. R. Ganguly, “ An exploration of climate data using complex networks,” in Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data (ACM, 2009), pp. 23–31. Google ScholarCrossref
  31. 31. L. Telesca and M. Lovallo, “ Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane,” J. Stat. Mech.: Theory Exp. 2011, P07001. Google ScholarCrossref
  32. 32. L. Telesca, M. Lovallo, and M. Kanevski, “ Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions,” Appl. Energy 162, 1052–1061 (2016). https://doi.org/10.1016/j.apenergy.2015.10.187, Google ScholarCrossref
  33. 33. M. Theodosiou, “ Forecasting monthly and quarterly time series using stl decomposition,” Int. J. Forecasting 27, 1178–1195 (2011). https://doi.org/10.1016/j.ijforecast.2010.11.002, Google ScholarCrossref
  34. 34. N. A. Treiber, J. Heinermann, and O. Kramer, “ Wind power prediction with machine learning,” in Computational Sustainability ( Springer International Publishing, 2016), pp. 13–29. Google ScholarCrossref
  35. 35. A. Tsonis and P. Roebber, “ The architecture of the climate network,” Physica A 333, 497–504 (2004). https://doi.org/10.1016/j.physa.2003.10.045, Google ScholarCrossref
  36. 36. A. A. Tsonis and K. L. Swanson, “ Topology and predictability of el Niño and la Niña networks,” Phys. Rev. Lett. 100, 228502 (2008). https://doi.org/10.1103/PhysRevLett.100.228502, Google ScholarCrossref
  37. 37. A. A. Tsonis, K. L. Swanson, and P. J. Roebber, “ What do networks have to do with climate?,” Bull. Am. Meteorol. Soc. 87, 585–595 (2006). https://doi.org/10.1175/BAMS-87-5-585, Google ScholarCrossref
  38. 38. K. Yamasaki, A. Gozolchiani, and S. Havlin, “ Climate networks around the globe are significantly affected by el Niño,” Phys. Rev. Lett. 100, 228501 (2008). https://doi.org/10.1103/PhysRevLett.100.228501, Google ScholarCrossref, CAS
  39. Published by AIP Publishing.