No Access Submitted: 16 January 2018 Accepted: 14 February 2018 Published Online: 05 March 2018
Journal of Applied Physics 123, 093903 (2018); https://doi.org/10.1063/1.5022567
more...View Affiliations
View Contributors
  • Ryan Alexander Pepper
  • Marijan Beg
  • David Cortés-Ortuño
  • Thomas Kluyver
  • Marc-Antonio Bisotti
  • Rebecca Carey
  • Mark Vousden
  • Maximilian Albert
  • Weiwei Wang
  • Ondrej Hovorka
  • Hans Fangohr
Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion—such as squares and triangles. Using simulation, we show that skyrmionic states can form the ground state for a range of system sizes in both triangular and square-shaped FeGe nanostructures of 10 nm thickness in the absence of an applied field. We further provide data to assist in the experimental verification of our prediction; to imitate an experiment where the system is saturated with a strong applied field before the field is removed, we compute the time evolution and show the final equilibrium configuration of magnetization fields, starting from a uniform alignment.
This work was financially supported by EPSRC Doctoral Training Centre Grant EP/L015382/1, EPSRC Doctoral Training Centre Grant EP/G03690X/1, OpenDreamKit Horizon 2020 European Research Infrastructures project (676541), and the EPSRC Programme grant on Skyrmionics (EP/N032128/1). D.C.-O. acknowledges the financial support from CONICYT Chilean scholarship programme Becas Chile (72130061). We acknowledge the use of the University of Southampton IRIDIS High Performance Computing Facility. T.K. acknowledges financial support from the Gordon and Betty Moore Foundation. W.W. acknowledges the financial support of the National Natural Science Foundation of China (Grant No. 11604169).
All data supporting this study are openly available from the Zenodo repository at https://doi.org/10.5281/zenodo.1066791.
  1. 1. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994). https://doi.org/10.1016/0304-8853(94)90046-9, Google ScholarCrossref
  2. 2. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 195, 182 (1999). https://doi.org/10.1016/S0304-8853(98)01038-5, Google ScholarCrossref
  3. 3. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006). https://doi.org/10.1038/nature05056, Google ScholarCrossref
  4. 4. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009). https://doi.org/10.1126/science.1166767, Google ScholarCrossref
  5. 5. M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. Lett. 102, 186601 (2009). https://doi.org/10.1103/PhysRevLett.102.186601, Google ScholarCrossref
  6. 6. C. Pfleiderer, A. Neubauer, S. Mühlbauer, F. Jonietz, M. Janoschek, S. Legl, R. Ritz, W. Münzer, C. Franz, P. G. Niklowitz, T. Keller, R. Georgii, P. Böni, B. Binz, A. Rosch, U. K. Rößler, and A. N. Bogdanov, J. Phys.: Condens. Matter 21, 279801 (2009). https://doi.org/10.1088/0953-8984/21/27/279801, Google ScholarCrossref
  7. 7. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni, Phys. Rev. Lett. 102, 186602 (2009). https://doi.org/10.1103/PhysRevLett.102.186602, Google ScholarCrossref
  8. 8. F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010). https://doi.org/10.1126/science.1195709, Google ScholarCrossref
  9. 9. T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012). https://doi.org/10.1103/PhysRevLett.108.237204, Google ScholarCrossref
  10. 10. S. L. Zhang, A. Bauer, D. M. Burn, P. Milde, E. Neuber, L. M. Eng, H. Berger, C. Pfleiderer, G. van der Laan, and T. Hesjedal, Nano Lett. 16, 3285 (2016). https://doi.org/10.1021/acs.nanolett.6b00845, Google ScholarCrossref
  11. 11. A. Crépieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998). https://doi.org/10.1016/S0304-8853(97)01044-5, Google ScholarCrossref
  12. 12. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011). https://doi.org/10.1038/nphys2045, Google ScholarCrossref
  13. 13. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Nat. Nanotechnol. 11, 1 (2016) https://doi.org/10.1038/nnano.2015.313. Google ScholarCrossref
  14. 14. H. J. Richter, J. Phys. D: Appl. Phys. 40, R149 (2007). https://doi.org/10.1088/0022-3727/40/9/R01, Google ScholarCrossref
  15. 15. A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013). https://doi.org/10.1038/nnano.2013.29, Google ScholarCrossref
  16. 16. P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Comput. Phys. Commun. 196, 335 (2015). https://doi.org/10.1016/j.cpc.2015.07.001, Google ScholarCrossref
  17. 17. D. Cortés-Ortuño, W. Wang, M. Beg, R. A. Pepper, M.-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka, and H. Fangohr, Sci. Rep. 7, 4060 (2017). https://doi.org/10.1038/s41598-017-03391-8, Google ScholarCrossref
  18. 18. N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013). https://doi.org/10.1126/science.1240573, Google ScholarCrossref
  19. 19. X. Yu, N. Kanazawa, W. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988 (2012). https://doi.org/10.1038/ncomms1990, Google ScholarCrossref
  20. 20. X. Zhang, G. P. Zhao, H. Fangohr, J. P. Liu, W. X. Xia, J. Xia, and F. J. Morvan, Sci. Rep. 5, 7643 (2015). https://doi.org/10.1038/srep07643, Google ScholarCrossref
  21. 21. S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, New J. Phys. 17, 023061 (2015). https://doi.org/10.1088/1367-2630/17/2/023061, Google ScholarCrossref
  22. 22. C. P. Chui and Y. Zhou, AIP Adv. 5, 097126 (2015). https://doi.org/10.1063/1.4930904, Google ScholarScitation, ISI
  23. 23. S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, Nat. Mater. 15, 501 (2016). https://doi.org/10.1038/nmat4593, Google ScholarCrossref
  24. 24. S. Krause and R. Wiesendanger, Nat. Mater. 15, 493 (2016). https://doi.org/10.1038/nmat4615, Google ScholarCrossref
  25. 25. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013). https://doi.org/10.1103/PhysRevB.88.184422, Google ScholarCrossref
  26. 26. V. M. Uzdin, M. N. Potkina, I. S. Lobanov, P. F. Bessarab, and H. Jónsson, “The effect of confinement and defects on the thermal stability of skyrmions,” Phys. B: Condensed Matter (published online) https://doi.org/10.1016/j.physb.2017.09.040. Google ScholarCrossref
  27. 27. M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden, M.-A. Bisotti, M. Albert, D. Chernyshenko, O. Hovorka, R. L. Stamps, and H. Fangohr, Sci. Rep. 5, 17137 (2015). https://doi.org/10.1038/srep17137, Google ScholarCrossref
  28. 28. C. P. Chui, F. Ma, and Y. Zhou, AIP Adv. 5, 047141 (2015). https://doi.org/10.1063/1.4919320, Google ScholarScitation, ISI
  29. 29. X. Zhao, C. Jin, C. Wang, H. Du, J. Zang, M. Tian, R. Che, and Y. Zhang, Proc. Natl. Acad. Sci. U.S.A. 113, 4918 (2016). https://doi.org/10.1073/pnas.1600197113, Google ScholarCrossref
  30. 30. F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei, A. Kovács, J. Zang, M. Tian, Y. Zhang, H. Du, and R. E. Dunin-Borkowski, Phys. Rev. Lett. 119, 197205 (2017). https://doi.org/10.1103/PhysRevLett.119.197205, Google ScholarCrossref
  31. 31. R. Carey, M. Beg, M. Albert, M.-A. Bisotti, D. Cortés-Ortuño, M. Vousden, W. Wang, O. Hovorka, and H. Fangohr, Appl. Phys. Lett. 109, 122401 (2016). https://doi.org/10.1063/1.4962726, Google ScholarScitation, ISI
  32. 32. F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev, New J. Phys. 18, 045002 (2016). https://doi.org/10.1088/1367-2630/18/4/045002, Google ScholarCrossref
  33. 33. M. Vousden, M. Albert, M. Beg, M.-A. Bisotti, R. Carey, D. Chernyshenko, D. Cortés-Ortuño, W. Wang, O. Hovorka, C. H. Marrows, and H. Fangohr, Appl. Phys. Lett. 108, 132406 (2016). https://doi.org/10.1063/1.4945262, Google ScholarScitation, ISI
  34. 34. A. O. Leonov, Y. Togawa, T. L. Monchesky, A. N. Bogdanov, J. Kishine, Y. Kousaka, M. Miyagawa, T. Koyama, J. Akimitsu, T. Koyama, K. Harada, S. Mori, D. McGrouther, R. Lamb, M. Krajnak, S. McVitie, R. L. Stamps, and K. Inoue, Phys. Rev. Lett. 117, 087202 (2016). https://doi.org/10.1103/PhysRevLett.117.087202, Google ScholarCrossref
  35. 35. S. Schneider, D. Wolf, M. J. Stolt, S. Jin, D. Pohl, B. Rellinghaus, M. Schmidt, B. Büchner, S. T. B. Goennenwein, K. Nielsch, and A. Lubk, preprint arXiv:1710.08322. Google Scholar
  36. 36. D. Fredkin and T. Koehler, IEEE Trans. Magn. 26, 415 (1990). https://doi.org/10.1109/20.106342, Google ScholarCrossref
  37. 37. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989). https://doi.org/10.1088/0953-8984/1/35/010, Google ScholarCrossref
  38. 38. J. C. Gallagher, K. Y. Meng, J. T. Brangham, H. L. Wang, B. D. Esser, D. W. McComb, and F. Y. Yang, Phys. Rev. Lett. 118, 027201 (2017). https://doi.org/10.1103/PhysRevLett.118.027201, Google ScholarCrossref
  39. 39. A. Logg and G. N. Wells, ACM Trans. Math. Software 37, 2 (2010). https://doi.org/10.1145/1731022.1731030, Google ScholarCrossref
  40. 40. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, ACM Trans. Math. Software 31, 363 (2005). https://doi.org/10.1145/1089014.1089020, Google ScholarCrossref
  41. 41. K. Y. Guslienko, IEEE Magn. Lett. 6, 4000104 (2015). https://doi.org/10.1109/LMAG.2015.2413758, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.