ABSTRACT
Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.
ACKNOWLEDGMENTS
J.N.T. and T.K. would like to thank Chun-Biu Li, Hiroshi Teramoto, Jason R. Green, and Schuyler B. Nicholson for helpful discussions. This work was supported by Grant-in-Aid for Young Scientists (B) (No. 15K18511) (to J.N.T.), Grant-in-Aid for Scientific Research (B) (No. 17H02940) (to T.K.), Grant-in-Aid for Specially Promoted Research (B) (No. 15KT0055) (to T.K.), Grant-in-Aid for Exploratory Research (No. 16K14703), JSPS (to T.K.), Grant-in-Aid for Scientific Research on Innovative Areas (No. 16H01525), MEXT (to T.K.), and a grant from the Israel Science Foundation (686/14) (to G.H.). The authors also thank the workshop “Macromolecular dynamics: structure, function and diseases,” Kavli Institute for Theoretical Physics, Beijing, China, (2014) through which this work was initiated.
- 1. M. Tavakoli, J. N. Taylor, C.-B. Li, T. Komatsuzaki, and S. Pressé, Advances in Chemical Physics (John Wiley & Sons, Inc., 2017), pp. 205–305. Google ScholarCrossref
- 2. M. Andrec, R. M. Levy, and D. S. Talaga, J. Phys. Chem. A 107, 7454 (2003). https://doi.org/10.1021/jp035514+, Google ScholarCrossref
- 3. S. A. McKinney, C. Joo, and T. Ha, Biophys. J. 91, 1941 (2006). https://doi.org/10.1529/biophysj.106.082487, Google ScholarCrossref
- 4. M. Pirchi, R. Tsukanov, R. Khamis, T. E. Tomov, Y. Berger, D. C. Khara, H. Volkov, G. Haran, and E. Nir, J. Phys. Chem. B 120, 13065 (2016). https://doi.org/10.1021/acs.jpcb.6b10726, Google ScholarCrossref
- 5. M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, and G. Haran, Nat. Commun. 2, 493 (2011). https://doi.org/10.1038/ncomms1504, Google ScholarCrossref, ISI
- 6. J. E. Bronson, J. Fei, J. M. Hofman, R. L. Gonzalez, Jr., and C. H. Wiggins, Biophys. J. 97, 3196 (2009). https://doi.org/10.1016/j.bpj.2009.09.031, Google ScholarCrossref
- 7. J.-W. van de Meent, J. E. Bronson, F. Wood, R. L. Gonzalez, and C. H. Wiggins, JMLR Workshop Conf. Proc. 28, 361 (2013). Google Scholar
- 8. I. Sgouralis and S. Pressé, Biophys. J. 112, 2021 (2017). https://doi.org/10.1016/j.bpj.2017.04.027, Google ScholarCrossref
- 9. I. Sgouralis and S. Pressé, Biophys. J. 112, 2117 (2017). https://doi.org/10.1016/j.bpj.2017.04.009, Google ScholarCrossref
- 10. C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817 (2001). https://doi.org/10.1023/a:1010388907793, Google ScholarCrossref
- 11. C. J. Ellison, J. R. Mahoney, R. G. James, J. P. Crutchfield, and J. Reichardt, Chaos 21, 037107 (2011). https://doi.org/10.1063/1.3637490, Google ScholarScitation
- 12. A. Baba and T. Komatsuzaki, Proc. Natl. Acad. Sci. U. S. A. 104, 19297 (2007). https://doi.org/10.1073/pnas.0704167104, Google ScholarCrossref
- 13. A. Baba and T. Komatsuzaki, Phys. Chem. Chem. Phys. 13, 1395 (2011). https://doi.org/10.1039/c0cp00694g, Google ScholarCrossref
- 14. B. Shuang, D. Cooper, J. N. Taylor, L. Kisley, J. Chen, W. Wang, C. B. Li, T. Komatsuzaki, and C. F. Landes, J. Phys. Chem. Lett. 5, 3157 (2014). https://doi.org/10.1021/jz501435p, Google ScholarCrossref
- 15. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, Google ScholarCrossref
- 16. J. N. Taylor, C.-B. Li, D. R. Cooper, C. F. Landes, and T. Komatsuzaki, Sci. Rep. 5, 9174 (2015). https://doi.org/10.1038/srep09174, Google ScholarCrossref
- 17. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003). Google Scholar
- 18. W. A. Taylor, Change-point analysis: A powerful new tool for detecting changes, http://www.variation.com/cpa/tech/changepoint.html, 2000. Google Scholar
- 19. D. Montiel, H. Cang, and H. Yang, J. Phys. Chem. B 110, 19763 (2006). https://doi.org/10.1021/jp062024j, Google ScholarCrossref, ISI
- 20. L. P. Watkins and H. Yang, J. Phys. Chem. B 109, 617 (2004). https://doi.org/10.1021/jp0467548, Google ScholarCrossref
- 21. C.-B. Li, H. Ueno, R. Watanabe, H. Noji, and T. Komatsuzaki, Nat. Commun. 6, 10223 (2015). https://doi.org/10.1038/ncomms10223, Google ScholarCrossref
- 22. S. V. Krivov and M. Karplus, J. Chem. Phys. 117, 10894 (2002). https://doi.org/10.1063/1.1517606, Google ScholarScitation, ISI
- 23. S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 101, 14766 (2004). https://doi.org/10.1073/pnas.0406234101, Google ScholarCrossref
- 24. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991). Google ScholarCrossref
- 25. R. E. Blahut, IEEE Trans. Inf. Theory 18, 460 (1972). https://doi.org/10.1109/tit.1972.1054855, Google ScholarCrossref
- 26. S. Arimoto, IEEE Trans. Inf. Theory 18, 14 (1972). https://doi.org/10.1109/tit.1972.1054753, Google ScholarCrossref
- 27. L. V. Kantorovich, J. Math. Sci. 133, 1381 (2006) https://doi.org/10.1007/s10958-006-0049-2, Google ScholarCrossref
L. V. Kantorovich, [Dokl. Akad. Nauk SSSR 37, 227 (1942)] (in Russian). , Google Scholar - 28. N. Slonim, G. S. Atwal, G. Tkačik, and W. Bialek, Proc. Natl. Acad. Sci. U. S. A. 102, 18297 (2005). https://doi.org/10.1073/pnas.0507432102, Google ScholarCrossref
- 29. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974). https://doi.org/10.1109/tac.1974.1100705, Google ScholarCrossref
- 30. G. Schwarz, Ann. Stat. 6, 461 (1978). https://doi.org/10.1214/aos/1176344136, Google ScholarCrossref, ISI
- 31. J. Rissanen, Automatica 14, 465 (1978). https://doi.org/10.1016/0005-1098(78)90005-5, Google ScholarCrossref
- 32. B. Efron, Ann. Stat. 7, 1 (1979). https://doi.org/10.1214/aos/1176344552, Google ScholarCrossref, ISI
- 33. J. G. Kemeny and J. L. Snell, Finite Markov Chains, 1st ed. (Springer-Verlag, New York, 1976). Google Scholar
- 34. J. G. Skellam, J. R. Stat. Soc. 109, 296 (1946). https://doi.org/10.2307/2981372, Google ScholarCrossref
- 35. R. K.P. Zia and B. Schmittmann, J. Stat. Mech.: Theory Exp. 2007, P07012. https://doi.org/10.1088/1742-5468/2007/07/p07012, Google ScholarCrossref
- 36. T. Platini, Phys. Rev. E 83, 011119 (2011). https://doi.org/10.1103/physreve.83.011119, Google ScholarCrossref
- 37. P. Sibani, J. C. Schön, P. Salamon, and J.-O. Andersson, Europhys. Lett. 22, 479 (1993). https://doi.org/10.1209/0295-5075/22/7/001, Google ScholarCrossref
- 38. P. Sibani and P. Schriver, Phys. Rev. B 49, 6667 (1994). https://doi.org/10.1103/physrevb.49.6667, Google ScholarCrossref
- 39. A. Baba and T. Komatsuzaki, Single Molecule Biophysics (John Wiley & Sons, Inc., 2011), pp. 299–327. Google ScholarCrossref
- 40. D. A. Evans and D. J. Wales, J. Chem. Phys. 118, 3891 (2003). https://doi.org/10.1063/1.1540099, Google ScholarScitation, ISI
- 41. D. J. Wales and P. Salamon, Proc. Natl. Acad. Sci. U. S. A. 111, 617 (2014). https://doi.org/10.1073/pnas.1319599111, Google ScholarCrossref
- 42. I. V. Gopich and A. Szabo, J. Phys. Chem. B 107, 5058 (2003). https://doi.org/10.1021/jp027481o, Google ScholarCrossref
- 43. K. Kamagata, T. Kawaguchi, Y. Iwahashi, A. Baba, K. Fujimoto, T. Komatsuzaki, Y. Sambongi, Y. Goto, and S. Takahashi, J. Am. Chem. Soc. 134, 11525 (2012). https://doi.org/10.1021/ja3020555, Google ScholarCrossref
- 44. L. R. Ford and D. R. Fulkerson, Can. J. Math. 8, 399 (1956). https://doi.org/10.4153/cjm-1956-045-5, Google ScholarCrossref
- 45. R. E. Gomory and T. C. Hu, J. Soc. Ind. Appl. Math. 9, 551 (1961). https://doi.org/10.1137/0109047, Google ScholarCrossref
- 46. M. Brand, N. Oliver, and A. Pentland, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), p. 994. Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.