No Access Submitted: 20 November 2017 Accepted: 05 January 2018 Published Online: 24 January 2018
J. Chem. Phys. 148, 123325 (2018); https://doi.org/10.1063/1.5016487
more...View Affiliations
View Contributors
  • J. Nicholas Taylor
  • Menahem Pirchi
  • Gilad Haran
  • Tamiki Komatsuzaki
Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.
J.N.T. and T.K. would like to thank Chun-Biu Li, Hiroshi Teramoto, Jason R. Green, and Schuyler B. Nicholson for helpful discussions. This work was supported by Grant-in-Aid for Young Scientists (B) (No. 15K18511) (to J.N.T.), Grant-in-Aid for Scientific Research (B) (No. 17H02940) (to T.K.), Grant-in-Aid for Specially Promoted Research (B) (No. 15KT0055) (to T.K.), Grant-in-Aid for Exploratory Research (No. 16K14703), JSPS (to T.K.), Grant-in-Aid for Scientific Research on Innovative Areas (No. 16H01525), MEXT (to T.K.), and a grant from the Israel Science Foundation (686/14) (to G.H.). The authors also thank the workshop “Macromolecular dynamics: structure, function and diseases,” Kavli Institute for Theoretical Physics, Beijing, China, (2014) through which this work was initiated.
  1. 1. M. Tavakoli, J. N. Taylor, C.-B. Li, T. Komatsuzaki, and S. Pressé, Advances in Chemical Physics (John Wiley & Sons, Inc., 2017), pp. 205–305. Google ScholarCrossref
  2. 2. M. Andrec, R. M. Levy, and D. S. Talaga, J. Phys. Chem. A 107, 7454 (2003). https://doi.org/10.1021/jp035514+, Google ScholarCrossref
  3. 3. S. A. McKinney, C. Joo, and T. Ha, Biophys. J. 91, 1941 (2006). https://doi.org/10.1529/biophysj.106.082487, Google ScholarCrossref
  4. 4. M. Pirchi, R. Tsukanov, R. Khamis, T. E. Tomov, Y. Berger, D. C. Khara, H. Volkov, G. Haran, and E. Nir, J. Phys. Chem. B 120, 13065 (2016). https://doi.org/10.1021/acs.jpcb.6b10726, Google ScholarCrossref
  5. 5. M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, and G. Haran, Nat. Commun. 2, 493 (2011). https://doi.org/10.1038/ncomms1504, Google ScholarCrossref, ISI
  6. 6. J. E. Bronson, J. Fei, J. M. Hofman, R. L. Gonzalez, Jr., and C. H. Wiggins, Biophys. J. 97, 3196 (2009). https://doi.org/10.1016/j.bpj.2009.09.031, Google ScholarCrossref
  7. 7. J.-W. van de Meent, J. E. Bronson, F. Wood, R. L. Gonzalez, and C. H. Wiggins, JMLR Workshop Conf. Proc. 28, 361 (2013). Google Scholar
  8. 8. I. Sgouralis and S. Pressé, Biophys. J. 112, 2021 (2017). https://doi.org/10.1016/j.bpj.2017.04.027, Google ScholarCrossref
  9. 9. I. Sgouralis and S. Pressé, Biophys. J. 112, 2117 (2017). https://doi.org/10.1016/j.bpj.2017.04.009, Google ScholarCrossref
  10. 10. C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817 (2001). https://doi.org/10.1023/a:1010388907793, Google ScholarCrossref
  11. 11. C. J. Ellison, J. R. Mahoney, R. G. James, J. P. Crutchfield, and J. Reichardt, Chaos 21, 037107 (2011). https://doi.org/10.1063/1.3637490, Google ScholarScitation
  12. 12. A. Baba and T. Komatsuzaki, Proc. Natl. Acad. Sci. U. S. A. 104, 19297 (2007). https://doi.org/10.1073/pnas.0704167104, Google ScholarCrossref
  13. 13. A. Baba and T. Komatsuzaki, Phys. Chem. Chem. Phys. 13, 1395 (2011). https://doi.org/10.1039/c0cp00694g, Google ScholarCrossref
  14. 14. B. Shuang, D. Cooper, J. N. Taylor, L. Kisley, J. Chen, W. Wang, C. B. Li, T. Komatsuzaki, and C. F. Landes, J. Phys. Chem. Lett. 5, 3157 (2014). https://doi.org/10.1021/jz501435p, Google ScholarCrossref
  15. 15. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, Google ScholarCrossref
  16. 16. J. N. Taylor, C.-B. Li, D. R. Cooper, C. F. Landes, and T. Komatsuzaki, Sci. Rep. 5, 9174 (2015). https://doi.org/10.1038/srep09174, Google ScholarCrossref
  17. 17. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003). Google Scholar
  18. 18. W. A. Taylor, Change-point analysis: A powerful new tool for detecting changes, http://www.variation.com/cpa/tech/changepoint.html, 2000. Google Scholar
  19. 19. D. Montiel, H. Cang, and H. Yang, J. Phys. Chem. B 110, 19763 (2006). https://doi.org/10.1021/jp062024j, Google ScholarCrossref, ISI
  20. 20. L. P. Watkins and H. Yang, J. Phys. Chem. B 109, 617 (2004). https://doi.org/10.1021/jp0467548, Google ScholarCrossref
  21. 21. C.-B. Li, H. Ueno, R. Watanabe, H. Noji, and T. Komatsuzaki, Nat. Commun. 6, 10223 (2015). https://doi.org/10.1038/ncomms10223, Google ScholarCrossref
  22. 22. S. V. Krivov and M. Karplus, J. Chem. Phys. 117, 10894 (2002). https://doi.org/10.1063/1.1517606, Google ScholarScitation, ISI
  23. 23. S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 101, 14766 (2004). https://doi.org/10.1073/pnas.0406234101, Google ScholarCrossref
  24. 24. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991). Google ScholarCrossref
  25. 25. R. E. Blahut, IEEE Trans. Inf. Theory 18, 460 (1972). https://doi.org/10.1109/tit.1972.1054855, Google ScholarCrossref
  26. 26. S. Arimoto, IEEE Trans. Inf. Theory 18, 14 (1972). https://doi.org/10.1109/tit.1972.1054753, Google ScholarCrossref
  27. 27. L. V. Kantorovich, J. Math. Sci. 133, 1381 (2006) https://doi.org/10.1007/s10958-006-0049-2, Google ScholarCrossref
    L. V. Kantorovich, [Dokl. Akad. Nauk SSSR 37, 227 (1942)] (in Russian). , Google Scholar
  28. 28. N. Slonim, G. S. Atwal, G. Tkačik, and W. Bialek, Proc. Natl. Acad. Sci. U. S. A. 102, 18297 (2005). https://doi.org/10.1073/pnas.0507432102, Google ScholarCrossref
  29. 29. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974). https://doi.org/10.1109/tac.1974.1100705, Google ScholarCrossref
  30. 30. G. Schwarz, Ann. Stat. 6, 461 (1978). https://doi.org/10.1214/aos/1176344136, Google ScholarCrossref, ISI
  31. 31. J. Rissanen, Automatica 14, 465 (1978). https://doi.org/10.1016/0005-1098(78)90005-5, Google ScholarCrossref
  32. 32. B. Efron, Ann. Stat. 7, 1 (1979). https://doi.org/10.1214/aos/1176344552, Google ScholarCrossref, ISI
  33. 33. J. G. Kemeny and J. L. Snell, Finite Markov Chains, 1st ed. (Springer-Verlag, New York, 1976). Google Scholar
  34. 34. J. G. Skellam, J. R. Stat. Soc. 109, 296 (1946). https://doi.org/10.2307/2981372, Google ScholarCrossref
  35. 35. R. K.P. Zia and B. Schmittmann, J. Stat. Mech.: Theory Exp. 2007, P07012. https://doi.org/10.1088/1742-5468/2007/07/p07012, Google ScholarCrossref
  36. 36. T. Platini, Phys. Rev. E 83, 011119 (2011). https://doi.org/10.1103/physreve.83.011119, Google ScholarCrossref
  37. 37. P. Sibani, J. C. Schön, P. Salamon, and J.-O. Andersson, Europhys. Lett. 22, 479 (1993). https://doi.org/10.1209/0295-5075/22/7/001, Google ScholarCrossref
  38. 38. P. Sibani and P. Schriver, Phys. Rev. B 49, 6667 (1994). https://doi.org/10.1103/physrevb.49.6667, Google ScholarCrossref
  39. 39. A. Baba and T. Komatsuzaki, Single Molecule Biophysics (John Wiley & Sons, Inc., 2011), pp. 299–327. Google ScholarCrossref
  40. 40. D. A. Evans and D. J. Wales, J. Chem. Phys. 118, 3891 (2003). https://doi.org/10.1063/1.1540099, Google ScholarScitation, ISI
  41. 41. D. J. Wales and P. Salamon, Proc. Natl. Acad. Sci. U. S. A. 111, 617 (2014). https://doi.org/10.1073/pnas.1319599111, Google ScholarCrossref
  42. 42. I. V. Gopich and A. Szabo, J. Phys. Chem. B 107, 5058 (2003). https://doi.org/10.1021/jp027481o, Google ScholarCrossref
  43. 43. K. Kamagata, T. Kawaguchi, Y. Iwahashi, A. Baba, K. Fujimoto, T. Komatsuzaki, Y. Sambongi, Y. Goto, and S. Takahashi, J. Am. Chem. Soc. 134, 11525 (2012). https://doi.org/10.1021/ja3020555, Google ScholarCrossref
  44. 44. L. R. Ford and D. R. Fulkerson, Can. J. Math. 8, 399 (1956). https://doi.org/10.4153/cjm-1956-045-5, Google ScholarCrossref
  45. 45. R. E. Gomory and T. C. Hu, J. Soc. Ind. Appl. Math. 9, 551 (1961). https://doi.org/10.1137/0109047, Google ScholarCrossref
  46. 46. M. Brand, N. Oliver, and A. Pentland, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), p. 994. Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.