No Access Submitted: 17 November 2017 Accepted: 07 February 2018 Published Online: 28 February 2018
J. Chem. Phys. 148, 193834 (2018); https://doi.org/10.1063/1.5016276
Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.
We thank FAPERJ, especially by the process 201.995/2016, and CAPES for the fellowship given to TCL, LAME-UFF, and Notre Dame Center for Research Computing for the computing support. Y.Z. and E.J.M. were supported by the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research under Contract No. DE-AC0206CH11357. L.T.C. acknowledges the CNPq fellowship and FAPERJ, JCNE No. 214996/E06/2015.
  1. 1. U.S. Energy Information Administration, DOE/EIA-0484(2013), 2016, Vol. 0484, p. 1. Google Scholar
  2. 2. B. Scrosati, J. Hassoun, and Y.-K. Sun, Energy Environ. Sci. 4, 3287 (2011). https://doi.org/10.1039/c1ee01388b, Google ScholarCrossref
  3. 3. B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048, Google ScholarCrossref
  4. 4. B. Dunn, H. Kamath, and J.-M. Tarascon, Science 334, 928 (2011). https://doi.org/10.1126/science.1212741, Google ScholarCrossref
  5. 5. K. Xu, Chem. Rev. 114, 11503 (2014). https://doi.org/10.1021/cr500003w, Google ScholarCrossref
  6. 6. J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, ChemSusChem 8, 2154 (2015). https://doi.org/10.1002/cssc.201500284, Google ScholarCrossref
  7. 7. X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, and Y. Huang, Energy Environ. Sci. 5, 6668 (2012). https://doi.org/10.1039/c2ee21152a, Google ScholarCrossref
  8. 8. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nat. Mater. 8, 621 (2009). https://doi.org/10.1038/nmat2448, Google ScholarCrossref, ISI
  9. 9. B. Kirchner, O. Holloczki, J. N. Canongia Lopes, and A. A. H. Padua, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5, 202 (2015). https://doi.org/10.1002/wcms.1212, Google ScholarCrossref
  10. 10. S. Zhang, Q. Zhang, Y. Zhang, Z. Chen, M. Watanabe, and Y. Deng, Prog. Mater. Sci. 77, 80 (2016). https://doi.org/10.1016/j.pmatsci.2015.10.001, Google ScholarCrossref
  11. 11. M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, and T. X. Mei, J. Ind. Eng. Chem. 19, 106 (2013). https://doi.org/10.1016/j.jiec.2012.07.011, Google ScholarCrossref
  12. 12. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, and K. Dokko, Chem. Rev. 117, 7190 (2017). https://doi.org/10.1021/acs.chemrev.6b00504, Google ScholarCrossref
  13. 13. S. Zhang, K. Ueno, K. Dokko, and M. Watanabe, Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117, Google ScholarCrossref
  14. 14. V. Lesch, Z. Li, D. Bedrov, O. Borodin, and A. Heuer, Phys. Chem. Chem. Phys. 18, 382 (2016). https://doi.org/10.1039/c5cp05111h, Google ScholarCrossref
  15. 15. V. Lesch, S. Jeremias, A. Moretti, S. Passerini, A. Heuer, and O. Borodin, J. Phys. Chem. B 118, 7367 (2014). https://doi.org/10.1021/jp501075g, Google ScholarCrossref, ISI
  16. 16. T. Méndez-Morales, J. Carrete, S. Bouzón-Capelo, M. Pérez-Rodríguez, Ó. Cabeza, L. J. Gallego, and L. M. Varela, J. Phys. Chem. B 117, 3207 (2013). https://doi.org/10.1021/jp312669r, Google ScholarCrossref
  17. 17. Z. Li, G. D. Smith, and D. Bedrov, J. Phys. Chem. B 116, 12801 (2012). https://doi.org/10.1021/jp3052246, Google ScholarCrossref, ISI
  18. 18. S. Jeremias, G. A. Giffin, A. Moretti, S. Jeong, and S. Passerini, J. Phys. Chem. C 118, 28361 (2014). https://doi.org/10.1021/jp5071506, Google ScholarCrossref
  19. 19. N. Sanchez-Ramirez, V. L. Martins, R. A. Ando, F. F. Camilo, S. M. Urahata, M. C. C. Ribeiro, and R. M. Torresi, J. Phys. Chem. B 118, 8772 (2014). https://doi.org/10.1021/jp505051v, Google ScholarCrossref
  20. 20. F. Dubnikova and Y. Zeiri, J. Phys. Chem. A 120, 3079 (2016). https://doi.org/10.1021/acs.jpca.5b10588, Google ScholarCrossref
  21. 21. H. Liu and E. Maginn, J. Chem. Phys. 139, 114508 (2013). https://doi.org/10.1063/1.4821155, Google ScholarScitation, ISI
  22. 22. B. Gurkan, B. F. Goodrich, E. M. Mindrup, L. E. Ficke, M. Massel, S. Seo, T. P. Senftle, H. Wu, M. F. Glaser, J. K. Shah, E. J. Maginn, J. F. Brennecke, and W. F. Schneider, J. Phys. Chem. Lett. 1, 3494 (2010). https://doi.org/10.1021/jz101533k, Google ScholarCrossref
  23. 23. L. Sun, O. Morales-Collazo, H. Xia, and J. F. Brennecke, J. Phys. Chem. B 119, 15030 (2015). https://doi.org/10.1021/acs.jpcb.5b09175, Google ScholarCrossref
  24. 24. S. Seo, M. A. DeSilva, H. Xia, and J. F. Brennecke, J. Phys. Chem. B 119, 11807 (2015). https://doi.org/10.1021/acs.jpcb.5b05733, Google ScholarCrossref
  25. 25. C. Shi, M. Quiroz-Guzman, A. DeSilva, and J. F. Brennecke, J. Electrochem. Soc. 160, A1604 (2013). https://doi.org/10.1149/2.116309jes, Google ScholarCrossref
  26. 26. L. Sun, O. Morales-Collazo, H. Xia, and J. F. Brennecke, J. Phys. Chem. B 120, 5767 (2016). https://doi.org/10.1021/acs.jpcb.6b03934, Google ScholarCrossref
  27. 27. J. J. Fillion, H. Xia, M. A. Desilva, M. Quiroz-Guzman, and J. F. Brennecke, J. Chem. Eng. Data 61, 2897 (2016). https://doi.org/10.1021/acs.jced.6b00269, Google ScholarCrossref
  28. 28. L. Sun, H. Xia, O. Morales-Collazo, and J. F. Brennecke, ECS Trans. 75, 469 (2016). https://doi.org/10.1149/07515.0469ecst, Google ScholarCrossref
  29. 29. V. L. Martins, N. Sanchez-Ramirez, M. C. C. Ribeiro, and R. M. Torresi, Phys. Chem. Chem. Phys. 17, 23041 (2015). https://doi.org/10.1039/c5cp02799c, Google ScholarCrossref
  30. 30. K. Tsunashima and M. Sugiya, Electrochem. Commun. 9, 2353 (2007). https://doi.org/10.1016/j.elecom.2007.07.003, Google ScholarCrossref
  31. 31. G. M. A. Girard, M. Hilder, H. Zhu, D. Nucciarone, K. Whitbread, S. Zavorine, M. Moser, M. Forsyth, D. R. MacFarlane, and P. C. Howlett, Phys. Chem. Chem. Phys. 17, 8706 (2015). https://doi.org/10.1039/c5cp00205b, Google ScholarCrossref
  32. 32. V. Armel, D. Velayutham, J. Sun, P. C. Howlett, M. Forsyth, D. R. MacFarlane, and J. M. Pringle, J. Mater. Chem. 21, 7640 (2011). https://doi.org/10.1039/c1jm10417a, Google ScholarCrossref
  33. 33. A. Urban, D.-H. Seo, and G. Ceder, Comput. Mater. 2, 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2, Google ScholarCrossref
  34. 34. M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Energy Environ. Sci. 5, 7854 (2012). https://doi.org/10.1039/c2ee21892e, Google ScholarCrossref
  35. 35. G. Jiang, C. Cheng, D. Li, and J. Z. Liu, Nano Res. 9, 174 (2016). https://doi.org/10.1007/s12274-015-0978-5, Google ScholarCrossref
  36. 36. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004). https://doi.org/10.1002/jcc.20035, Google ScholarCrossref, ISI
  37. 37. K. G. Sprenger, V. W. Jaeger, and J. Pfaendtner, J. Phys. Chem. B 119, 5882 (2015). https://doi.org/10.1021/acs.jpcb.5b00689, Google ScholarCrossref
  38. 38. C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10269 (1993). https://doi.org/10.1021/j100142a004, Google ScholarCrossref, ISI
  39. 39. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/physrevb.37.785, Google ScholarCrossref, ISI
  40. 40. R. Ditchfield, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902, Google ScholarScitation, ISI
  41. 41. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996). https://doi.org/10.1021/ja9621760, Google ScholarCrossref, ISI
  42. 42. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, J. Comput. Chem. 30, 2157 (2009). https://doi.org/10.1002/jcc.21224, Google ScholarCrossref
  43. 43. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007). https://doi.org/10.1063/1.2408420, Google ScholarScitation, ISI
  44. 44. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981). https://doi.org/10.1063/1.328693, Google ScholarScitation, ISI
  45. 45. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). https://doi.org/10.1063/1.448118, Google ScholarScitation, ISI
  46. 46. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997). https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l, Google ScholarCrossref
  47. 47. M. J. Abraham and J. E. Gready, J. Comput. Chem. 32, 2031 (2011). https://doi.org/10.1002/jcc.21773, Google ScholarCrossref
  48. 48. M. Brehm and B. Kirchner, J. Chem. Inf. Model. 51, 2007 (2011). https://doi.org/10.1021/ci200217w, Google ScholarCrossref
  49. 49. J. B. Haskins, W. R. Bennett, J. J. Wu, D. M. Hernández, O. Borodin, J. D. Monk, C. W. Bauschlicher, and J. W. Lawson, J. Phys. Chem. B 118, 11295 (2014). https://doi.org/10.1021/jp5061705, Google ScholarCrossref
  50. 50. J. Habasaki and K. L. Ngai, J. Chem. Phys. 129, 194501 (2008). https://doi.org/10.1063/1.3005372, Google ScholarScitation, ISI
  51. 51. M. S. Kelkar and E. J. Maginn, J. Phys. Chem. B 111, 4867 (2007). https://doi.org/10.1021/jp0686893, Google ScholarCrossref
  52. 52. O. Borodin, J. Phys. Chem. B 113, 11463 (2009). https://doi.org/10.1021/jp905220k, Google ScholarCrossref
  53. 53. O. N. Starovoytov, H. Torabifard, and G. A. Cisneros, J. Phys. Chem. B 118, 7156 (2014). https://doi.org/10.1021/jp503347f, Google ScholarCrossref
  54. 54. H. Torabifard, L. Reed, M. T. Berry, J. E. Hein, E. Menke, and G. A. Cisneros, J. Chem. Phys. 147, 161731 (2017). https://doi.org/10.1063/1.5004680, Google ScholarScitation, ISI
  55. 55. Y. Zhang and E. J. Maginn, J. Phys. Chem. B 116, 10036 (2012). https://doi.org/10.1021/jp3037999, Google ScholarCrossref
  56. 56. E. D. Hazelbaker, S. Budhathoki, A. Katihar, J. K. Shah, E. J. Maginn, and S. Vasenkov, J. Phys. Chem. B 116, 9141 (2012). https://doi.org/10.1021/jp304528d, Google ScholarCrossref
  57. 57. T. Ruether, M. Kanakubo, A. S. Best, and K. R. Harris, Phys. Chem. Chem. Phys. 19, 10527 (2017). https://doi.org/10.1039/c7cp01272a, Google ScholarCrossref
  58. 58. J. M. Vicent-Luna, J. M. Ortiz-Roldan, S. Hamad, R. Tena-Zaera, S. Calero, and J. A. Anta, ChemPhysChem 17, 2473 (2016). https://doi.org/10.1002/cphc.201600285, Google ScholarCrossref
  59. 59. L. Aguilera, J. Völkner, A. Labrador, and A. Matic, Phys. Chem. Chem. Phys. 17, 27082 (2015). https://doi.org/10.1039/c5cp03825a, Google ScholarCrossref
  60. 60. S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 122, 024511 (2005). https://doi.org/10.1063/1.1826035, Google ScholarScitation, ISI
  61. 61. Y. Umebayashi, H. Hamano, S. Seki, B. Minofar, K. Fujii, K. Hayamizu, S. Tsuzuki, Y. Kameda, S. Kohara, and M. Watanabe, J. Phys. Chem. B 115, 12179 (2011). https://doi.org/10.1021/jp2072827, Google ScholarCrossref
  62. 62. J.-C. Lasseg̀ues, J. Grondin, C. Aupetit, and P. Johansson, J. Phys. Chem. A 113, 305 (2009). https://doi.org/10.1021/jp806124w, Google ScholarCrossref
  63. 63. O. Borodin, G. D. Smith, and W. Henderson, J. Phys. Chem. B 110, 16879 (2006). https://doi.org/10.1021/jp061930t, Google ScholarCrossref
  64. 64. T. C. Lourenço, M. F. C. Coelho, T. C. Ramalho, D. Van Der Spoel, and L. T. Costa, Environ. Sci. Technol. 47, 7421 (2013). https://doi.org/10.1021/es4020986, Google ScholarCrossref
  65. 65. M. J. Abraham, T. Murtola, R. S. Szilárd Páll, J. C. Smith, B. Hess, and E. Lindahl, SoftwareX 1-2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001, Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.