No Access Submitted: 02 November 2017 Accepted: 09 December 2017 Published Online: 27 December 2017
Appl. Phys. Lett. 111, 261104 (2017); https://doi.org/10.1063/1.5011719
more...View AffiliationsView Contributors
  • O. Be'er
  • H. Ohadi
  • Y. del Valle-Inclan Redondo
  • A. J. Ramsay
  • S. I. Tsintzos
  • Z. Hatzopoulos
  • P. G. Savvidis
  • J. J. Baumberg
We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically trapped spin-polarized polariton condensate in different locations on the microcavity and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.
We acknowledge Grant Nos. EPSRC EP/L027151/1, ERC LINASS 320503, and Leverhulme Trust Grant No. VP1-2013-011. P.S. acknowledges support from ITMO Fellowship Program and megaGrant No. 14.Y26.31.0015 of the Ministry of Education and Science of Russian Federation. A.J.R. acknowledges support of Horizon 2020 programme (No. FETPROACT-2016 732894-HOT). Supporting research data can be found at: http://doi.org/10.17863/CAM.16887.
  1. 1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014). https://doi.org/10.1103/RevModPhys.86.1391, Google ScholarCrossref, ISI
  2. 2. H. Okamoto, D. Ito, T. Watanabe, K. Onomitsu, H. Sanada, H. Gotoh, T. Sogawa, and H. Yamaguchi, Phys. Rev. B 84, 014305 (2011). https://doi.org/10.1103/PhysRevB.84.014305, Google ScholarCrossref
  3. 3. M. A. Hafiz, L. Kosuru, and M. I. Younis, Nat. Commun. 7, 11137 (2016). https://doi.org/10.1038/ncomms11137, Google ScholarCrossref
  4. 4. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, Nat. Commun. 5, 4429 (2014). https://doi.org/10.1038/ncomms5429, Google ScholarCrossref, ISI
  5. 5. A. Hernández-Mínguez, J. M. Hernandez, F. Macià, A. García-Santiago, J. Tejada, and P. V. Santos, Phys. Rev. Lett. 95, 217205 (2005). https://doi.org/10.1103/PhysRevLett.95.217205, Google ScholarCrossref
  6. 6. M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Phys. Rev. Lett. 106, 117601 (2011). https://doi.org/10.1103/PhysRevLett.106.117601, Google ScholarCrossref, ISI
  7. 7. K. Biermann, O. D. D. Couto, E. Cerda, H. B. de Carvalho, R. Hey, and P. V. Santos, J. Supercond. Novel Magn. 23, 27 (2010). https://doi.org/10.1007/s10948-009-0562-x, Google ScholarCrossref
  8. 8. S. G. Carter, A. S. Bracker, M. K. Yakes, M. K. Zalalutdinov, M. Kim, C. S. Kim, C. Czarnocki, M. Scheibner, and D. Gammon, Appl. Phys. Lett. 111, 183101 (2017). https://doi.org/10.1063/1.4995069, Google ScholarScitation, ISI
  9. 9. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, 2nd ed. ( Oxford University Press, Oxford, New York, 2017). Google ScholarCrossref
  10. 10. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006). https://doi.org/10.1038/nature05131, Google ScholarCrossref, ISI
  11. 11. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007). https://doi.org/10.1126/science.1140990, Google ScholarCrossref, ISI
  12. 12. J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 101, 136409 (2008). https://doi.org/10.1103/PhysRevLett.101.136409, Google ScholarCrossref, ISI
  13. 13. R. Balili, B. Nelsen, D. W. Snoke, R. H. Reid, L. Pfeiffer, and K. West, Phys. Rev. B 81, 125311 (2010). https://doi.org/10.1103/PhysRevB.81.125311, Google ScholarCrossref
  14. 14. E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010). https://doi.org/10.1103/PhysRevLett.105.116402, Google ScholarCrossref
  15. 15. N. Bobrovska, M. Matuszewski, T. C. H. Liew, and O. Kyriienko, Phys. Rev. B 95, 085309 (2017). https://doi.org/10.1103/PhysRevB.95.085309, Google ScholarCrossref
  16. 16. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, Science 354, 726 (2016). https://doi.org/10.1126/science.aah5243, Google ScholarCrossref, ISI
  17. 17. H. Ohadi, A. J. Ramsay, H. Sigurdsson, Y. del Valle-Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, T. C. H. Liew, I. A. Shelykh, Y. G. Rubo, P. G. Savvidis, and J. J. Baumberg, Phys. Rev. Lett. 119, 067401 (2017). https://doi.org/10.1103/PhysRevLett.119.067401, Google ScholarCrossref
  18. 18. P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, New J. Phys. 14, 023060 (2012). https://doi.org/10.1088/1367-2630/14/2/023060, Google ScholarCrossref
  19. 19. H. Ohadi, A. Dreismann, Y. G. Rubo, F. Pinsker, Y. del Valle-Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Phys. Rev. X 5, 031002 (2015). https://doi.org/10.1103/PhysRevX.5.031002, Google ScholarCrossref
  20. 20. E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010). https://doi.org/10.1038/nphys1750, Google ScholarCrossref, ISI
  21. 21. G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Nat. Phys. 8, 190 (2012). https://doi.org/10.1038/nphys2182, Google ScholarCrossref, ISI
  22. 22. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547 (2000). https://doi.org/10.1103/PhysRevLett.84.1547, Google ScholarCrossref, ISI
  23. 23. A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, Phys. Rev. Lett. 106, 076401 (2011). https://doi.org/10.1103/PhysRevLett.106.076401, Google ScholarCrossref, ISI
  24. 24. A. Harata, H. Nishimura, and T. Sawada, Appl. Phys. Lett. 57, 132 (1990). https://doi.org/10.1063/1.103964, Google ScholarScitation, ISI
  25. 25. A. W. Leissa, Vibration of Plates ( NASA, 1969). Google Scholar
  26. 26. S. Adachi, Properties of Aluminium Gallium Arsenide ( IET, 1993). Google Scholar
  27. 27. M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007). https://doi.org/10.1103/PhysRevLett.99.140402, Google ScholarCrossref, ISI
  1. © 2017 Author(s). Published by AIP Publishing.