No Access Submitted: 17 October 2017 Accepted: 03 December 2017 Published Online: 22 December 2017
Appl. Phys. Lett. 111, 252402 (2017); https://doi.org/10.1063/1.5009598
We report the results of ultraviolet Raman spectroscopy of NiO, which allowed us to determine the spin-phonon coupling coefficients in this important antiferromagnetic material. The use of the second-order phonon scattering and ultraviolet laser excitation (λ = 325 nm) was essential for overcoming the problem of the optical selection rules and dominance of the two-magnon band in the visible Raman spectrum of NiO. We established that the spins of Ni atoms interact more strongly with the longitudinal than transverse optical phonons and produce opposite effects on the phonon energies. The peculiarities of the spin-phonon coupling are consistent with the trends given by density functional theory. The obtained results shed light on the nature of the spin-phonon coupling in antiferromagnetic insulators and can help in developing spintronic devices.
The work at UC Riverside was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) under Award No. SC0012670. The ab initio simulations used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (NSF) Grant No. ACI-1548562 and allocation ID TG-DMR130081. M.M.L. acknowledges Nacional de Desenvolvimento a Pesquisa (CNPq) and the program Ciencias sem Fronteiras for financial support during her research at UC Riverside. A.A.B. acknowledges useful discussions with Dr. David J. Lockwood, National Research Council of Canada.
  1. 1. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang, and H. Dai, Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695, Google ScholarCrossref
  2. 2. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. (Michael) Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, Nat. Nanotechnol. 11, 75 (2016). https://doi.org/10.1038/nnano.2015.230, Google ScholarCrossref
  3. 3. W. Lin, K. Chen, S. Zhang, and C. L. Chien, Phys. Rev. Lett. 116, 186601 (2016). https://doi.org/10.1103/PhysRevLett.116.186601, Google ScholarCrossref
  4. 4. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, Nat. Photonics 5, 31 (2011). https://doi.org/10.1038/nphoton.2010.259, Google ScholarCrossref
  5. 5. U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature 446, 522 (2007). https://doi.org/10.1038/nature05617, Google ScholarCrossref
  6. 6. I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, and Y. Ikuhara, Nat. Nanotechnol. 8, 266 (2013). https://doi.org/10.1038/nnano.2013.45, Google ScholarCrossref
  7. 7. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 77402 (2010). https://doi.org/10.1103/PhysRevLett.105.077402, Google ScholarCrossref
  8. 8. F. L. A. Machado, P. R. T. Ribeiro, J. Holanda, R. L. Rodríguez-Suárez, A. Azevedo, and S. M. Rezende, Phys. Rev. B 95, 104418 (2017). https://doi.org/10.1103/PhysRevB.95.104418, Google ScholarCrossref
  9. 9. C. Tzschaschel, K. Otani, R. Iida, T. Shimura, H. Ueda, S. Günther, M. Fiebig, and T. Satoh, Phys. Rev. B 95, 174407 (2017). https://doi.org/10.1103/PhysRevB.95.174407, Google ScholarCrossref
  10. 10. R. Khymyn, I. Lisenkov, V. Tiberkevich, B. A. Ivanov, and A. Slavin, Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705, Google ScholarCrossref
  11. 11. T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, Nat. Phys. 13, 132 (2016). https://doi.org/10.1038/nphys3925, Google ScholarCrossref
  12. 12. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010). https://doi.org/10.1038/nature08876, Google ScholarCrossref
  13. 13. T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotechnol. 11, 231 (2016). https://doi.org/10.1038/nnano.2016.18, Google ScholarCrossref
  14. 14. J. Milano and M. Grimsditch, Phys. Rev. B 81, 94415 (2010). https://doi.org/10.1103/PhysRevB.81.094415, Google ScholarCrossref
  15. 15. R. E. E. Dietz, G. I. I. Parisot, and A. E. E. Meixner, Phys. Rev. B 4, 2302 (1971). https://doi.org/10.1103/PhysRevB.4.2302, Google ScholarCrossref
  16. 16. R. E. Dietz, W. F. Brinkman, A. E. Meixner, and H. J. Guggenheim, Phys. Rev. Lett. 27, 814 (1971). https://doi.org/10.1103/PhysRevLett.27.814, Google ScholarCrossref
  17. 17. M. T. Hutchings and E. J. Samuelsen, Phys. Rev. B 6, 3447 (1972). https://doi.org/10.1103/PhysRevB.6.3447, Google ScholarCrossref
  18. 18. R. A. Coy, C. W. Tompson, and E. Gürmen, Solid State Commun. 18, 845 (1976). https://doi.org/10.1016/0038-1098(76)90220-9, Google ScholarCrossref
  19. 19. A. P. Cracknell and S. J. Joshua, Math. Proc. Cambridge Philos. Soc. 66, 493–504 (1969). https://doi.org/10.1017/S0305004100045229, Google ScholarCrossref
  20. 20. A. C. Gandhi, C.-Y. Huang, C. C. Yang, T. S. Chan, C.-L. Cheng, Y.-R. Ma, and S. Y. Wu, Nanoscale Res. Lett. 6, 485 (2011). https://doi.org/10.1186/1556-276X-6-485, Google ScholarCrossref
  21. 21. D. J. Lockwood, M. G. Cottam, and J. H. Baskey, J. Magn. Magn. Mater. 104–107, 1053 (1992). https://doi.org/10.1016/0304-8853(92)90486-8, Google ScholarCrossref
  22. 22. M. Grimsditch, S. Kumar, and R. S. Goldman, J. Magn. Magn. Mater. 129, 327 (1994). https://doi.org/10.1016/0304-8853(94)90128-7, Google ScholarCrossref
  23. 23. M. Grimsditch, L. E. McNeil, and D. J. Lockwood, Phys. Rev. B 58, 14462 (1998). https://doi.org/10.1103/PhysRevB.58.14462, Google ScholarCrossref
  24. 24. J. Milano, L. B. Steren, and M. Grimsditch, Phys. Rev. Lett. 93, 77601 (2004). https://doi.org/10.1103/PhysRevLett.93.077601, Google ScholarCrossref
  25. 25. M. M. Lacerda, F. Kargar, E. Aytan, R. Samnakay, B. Debnath, J. X. Li, A. Khitun, R. K. Lake, J. Shi, and A. A. Balandin, Appl. Phys. Lett. 110, 202406 (2017). https://doi.org/10.1063/1.4983810, Google ScholarScitation, ISI
  26. 26. D. J. Lockwood and M. G. Cottam, J. Appl. Phys. 64, 5876 (1988). https://doi.org/10.1063/1.342186, Google ScholarScitation, ISI
  27. 27. M. G. Cottam and D. J. Lockwood, Light Scattering in Magnetic Solids (Wiley-Interscience, 1986), ISBN-13: 978-047181701, ISBN-10: 0471817015. Google Scholar
  28. 28. D. J. Lockwood, Low Temp. Phys. 28, 505 (2002). https://doi.org/10.1063/1.1496657, Google ScholarScitation, ISI
  29. 29. J. Vermette, S. Jandl, and M. M. Gospodinov, J. Phys.: Condens. Matter 20, 425219 (2008). https://doi.org/10.1088/0953-8984/20/42/425219, Google ScholarCrossref
  30. 30. Y. Sharma, S. Sahoo, W. Perez, S. Mukherjee, R. Gupta, A. Garg, R. Chatterjee, and R. S. Katiyar, J. Appl. Phys. 115, 183907 (2014). https://doi.org/10.1063/1.4875099, Google ScholarScitation, ISI
  31. 31. E. Granado, A. García, J. A. Sanjurjo, C. Rettori, I. Torriani, F. Prado, R. D. Sánchez, A. Caneiro, and S. B. Oseroff, Phys. Rev. B 60, 11879 (1999). https://doi.org/10.1103/PhysRevB.60.11879, Google ScholarCrossref
  32. 32. W. Hayes and R. A. Loudon, Light Scattering by Crystals ( John Wiley & Sons Ltd., New York, 1978). Google Scholar
  33. 33. M. J. Massey, N. H. Chen, J. W. Allen, and R. Merlin, Phys. Rev. B 42, 8776 (1990). https://doi.org/10.1103/PhysRevB.42.8776, Google ScholarCrossref
  34. 34. A. Sievers and M. Tinkham, Phys. Rev. 129, 1566 (1963). https://doi.org/10.1103/PhysRev.129.1566, Google ScholarCrossref
  35. 35. E. Chung, D. Paul, G. Balakrishnan, M. Lees, A. Ivanov, and M. Yethiraj, Phys. Rev. B 68, 140406 (2003). https://doi.org/10.1103/PhysRevB.68.140406, Google ScholarCrossref
  36. 36. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys.: Conf. Ser. 93, 12039 (2007). https://doi.org/10.1088/1742-6596/93/1/012039, Google ScholarCrossref
  37. 37. M. G. Cottam, J. Phys. C: Solid State Phys. 5, 1461 (1972). https://doi.org/10.1088/0022-3719/5/12/022, Google ScholarCrossref
  38. 38. M. Press, M. Mayer, P. Knoll, S. Lo, U. Hohenester, and E. Holzinger-Schweiger, J. Raman Spectrosc. 27, 343 (1996). https://doi.org/10.1002/(SICI)1097-4555(199603)27:3/4<343::AID-JRS956>3.0.CO;2-S, Google ScholarCrossref
  39. 39. R. J. Powell and W. E. Spicer, Phys. Rev. B 2, 2182 (1970). https://doi.org/10.1103/PhysRevB.2.2182, Google ScholarCrossref
  40. 40. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984). https://doi.org/10.1103/PhysRevLett.53.2339, Google ScholarCrossref
  41. 41. S. Di Sabatino, J. A. Berger, L. Reining, and P. Romaniello, Phys. Rev. B 94, 155141 (2016). https://doi.org/10.1103/PhysRevB.94.155141, Google ScholarCrossref
  42. 42. A. V. Chubukov and D. M. Frenkel, Phys. Rev. B 52, 9760 (1995). https://doi.org/10.1103/PhysRevB.52.9760, Google ScholarCrossref
  43. 43. A. Floris, S. de Gironcoli, E. K. U. Gross, and M. Cococcioni, Phys. Rev. B 84, 161102 (2011). https://doi.org/10.1103/PhysRevB.84.161102, Google ScholarCrossref
  44. 44. P. G. Klemens, Phys. Rev. 148, 845 (1966). https://doi.org/10.1103/PhysRev.148.845, Google ScholarCrossref
  45. 45. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983). https://doi.org/10.1103/PhysRevB.28.1928, Google ScholarCrossref
  46. 46. A. B. Sushkov, O. Tchernyshyov, W. Ratcliff, S. W. Cheong, and H. D. Drew, Phys. Rev. Lett. 94, 137202 (2005). https://doi.org/10.1103/PhysRevLett.94.137202, Google ScholarCrossref
  47. 47. S. Calder, J. H. Lee, M. B. Stone, M. D. Lumsden, J. C. Lang, M. Feygenson, Z. Zhao, J.-Q. Yan, Y. G. Shi, Y. S. Sun, Y. Tsujimoto, K. Yamaura, and A. D. Christianson, Nat. Commun. 6, 8916 (2015). https://doi.org/10.1038/ncomms9916, Google ScholarCrossref
  48. 48. X. K. Chen, J. C. Irwin, and J. P. Franck, Phys. Rev. B 52, R13130 (1995). https://doi.org/10.1103/PhysRevB.52.R13130, Google ScholarCrossref
  49. 49. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, and M. Pärs, Open Phys. 9, 1096 (2011). https://doi.org/10.2478/s11534-010-0130-9, Google ScholarCrossref
  50. 50. Y. Wang, J. E. Saal, J.-J. Wang, A. Saengdeejing, S.-L. Shang, L.-Q. Chen, and Z.-K. Liu, Phys. Rev. B 82, 81104 (2010). https://doi.org/10.1103/PhysRevB.82.081104, Google ScholarCrossref
  51. 51. A. Rohrbach, J. Hafner, and G. Kresse, Phys. Rev. B 69, 075413 (2004). https://doi.org/10.1103/PhysRevB.69.075413, Google ScholarCrossref
  52. 52. H. Uchiyama, S. Tsutsui, and A. Q. R. Baron, Phys. Rev. B 81, 241103 (2010). https://doi.org/10.1103/PhysRevB.81.241103, Google ScholarCrossref
  53. 53. R. Merlin, Journal De Physique 41, C5–233 (1980) https://doi.org/10.1051/jphyscol:1980539. Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.