No Access Submitted: 02 October 2017 Accepted: 06 December 2017 Published Online: 03 January 2018
Journal of Applied Physics 123, 013903 (2018);
more...View Affiliations
View Contributors
  • Charles B. Crook
  • Gregory Houchins
  • Jian-Xin Zhu
  • Alexander V. Balatsky
  • Costel Constantin
  • Jason T. Haraldsen
This study examines the magnetic interactions between spatially variable manganese and chromium trimers substituted into a graphene superlattice. Using density functional theory, we calculate the electronic band structure and magnetic populations for the determination of the electronic and magnetic properties of the system. To explore the super-exchange coupling between the transition-metal atoms, we establish the magnetic ground states through a comparison of multiple magnetic and spatial configurations. Through an analysis of the electronic and magnetic properties, we conclude that the presence of transition-metal atoms can induce a distinct magnetic moment in the surrounding carbon atoms as well as produce a Ruderman-Kittel-Kasuya-Yosida-like super-exchange coupling. It is hoped that these simulations can lead to the realization of spintronic applications in graphene through electronic control of the magnetic clusters.
C.B.C., G.H., and J.T.H. acknowledge undergraduate support from the Institute for Materials Science at Los Alamos and computational support from the Center for Integrated Nanotechnologies at Los Alamos National Laboratory, a user facility. J.T.H. would also like to acknowledge travel support from the Kavli Institute for Theoretical Physics at the University of California Santa Barbara. The work at Los Alamos National Laboratory was carried out under the auspice of the U.S. DOE and NNSA under Contract No. DEAC52-06NA25396 and supported by U.S. DOE Basic Energy Sciences E304 (J.-X.Z.). Furthermore, A.V.B. acknowledges support by US DOE Basic Energy Sciences E3B7, European Research Council Advanced Grant DM 321031, and Knut and Alice Wallenberg Foundation.
  1. 1. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “ Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014)., Google ScholarCrossref, ISI
  2. 2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Trege, “ Spintronics: A spin-based electronics vision for the future,” Science 294, 1488–1495 (2001)., Google ScholarCrossref, ISI
  3. 3. D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computation ( Springer Science & Business Media, 2002). Google ScholarCrossref
  4. 4. D. D. Awschalom and M. E. Flatte, “ Challenges for semiconductor spintronics,” Nat. Phys. 3, 153–159 (2007)., Google ScholarCrossref, ISI
  5. 5. X. Li and X. Wu, “ Two-dimensional monolayer designs for spintronics applications,” WIREs Comput. Mol. Sci. 6, 441 (2016)., Google ScholarCrossref
  6. 6. T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, “ Dirac materials,” Adv. Phys. 63, 1–76 (2014)., Google ScholarCrossref, ISI
  7. 7. S. D. Bader and S. S. P. Parkin, “ Spintronics,” Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010)., Google ScholarCrossref
  8. 8. I. Zutic, J. Fabian, and S. Das Sarma, “ Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004)., Google ScholarCrossref
  9. 9. A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger, “ Realizing all-spin based logic operations atom by atom,” Science 332, 1062–1064 (2011)., Google ScholarCrossref
  10. 10. Y. Xu and S. Thompson, Spintronic Materials and Technology ( CRC Press, 2006). Google ScholarCrossref
  11. 11. K. Sato and H. Katayama-Yoshida, “ First principles materials design for semiconductor spintronics,” Semicond. Sci. Technol. 17, 367 (2002)., Google ScholarCrossref
  12. 12. H.-A. Engel, P. Recher, and D. Loss, “ Electron spins in quantum dots for spintronics and quantum computation,” Solid State Commun. 119, 229–236 (2001)., Google ScholarCrossref
  13. 13. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. ( Cambridge University Press, 2010). Google ScholarCrossref
  14. 14. H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “ Das Adsorptionsverhalten sehr dnner Kohlenstoff-Folien,” Z. Anorg. Allg. Chem. 316, 119–127 (1962)., Google ScholarCrossref
  15. 15. A. K. Geim and K. S. Novoselov, “ The rise of graphene,” Nat. Mater. 6, 183–191 (2007)., Google ScholarCrossref, ISI
  16. 16. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “ The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009)., Google ScholarCrossref, ISI
  17. 17. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “ Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008)., Google ScholarCrossref
  18. 18. E. Pop, V. Varshney, and A. K. Roy, “ Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37, 1273–1281 (2012)., Google ScholarCrossref, ISI
  19. 19. K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “ Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008)., Google ScholarCrossref
  20. 20. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “ Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100, 016602 (2008)., Google ScholarCrossref
  21. 21. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “ Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008)., Google ScholarCrossref, ISI
  22. 22. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “ Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010)., Google ScholarCrossref
  23. 23. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008)., Google ScholarCrossref, ISI
  24. 24. N. Savage, “ Materials science: Super carbon,” Nature 483, S30–S31 (2012)., Google ScholarCrossref
  25. 25. O. V. Yazyev and M. I. Katsnelson, “ Magnetic correlations at graphene edges: Basis for novel spintronics devices,” Phys. Rev. Lett. 100, 047209 (2008)., Google ScholarCrossref
  26. 26. C. N. R. Rao, H. S. S. R. Matte, K. S. Subrahmanyam, and U. Maitra, “ Unusual magnetic properties of graphene and related materials,” Chem. Sci. 3, 45 (2012)., Google ScholarCrossref
  27. 27. D. Pesin and A. H. MacDonald, “ Spintronics and pseudospintronics in graphene and topological insulators,” Nat. Mater. 11, 409–416 (2012)., Google ScholarCrossref, ISI
  28. 28. M. Sherafati and S. Satpathy, “ RKKY interaction in graphene from the lattice Green's function,” Phys. Rev. B 83, 165425 (2011)., Google ScholarCrossref
  29. 29. V. K. Dugaev, V. I. Litvinov, and J. Barnas, “ Exchange interaction of magnetic impurities in graphene,” Phys. Rev. B 74, 224438 (2006)., Google ScholarCrossref
  30. 30. Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, “ Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall Effect,” Phys. Rev. Lett. 114, 016603 (2015)., Google ScholarCrossref, ISI
  31. 31. D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, “ Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations,” Phys. Rev. B 77, 035427 (2008)., Google ScholarCrossref
  32. 32. H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. José Palacios, C. Salgado, M. M. Ugeda, J.-Y. Veuillen, F. Yndurain, and I. Brihuega, “ Atomic-scale control of graphene magnetism by using hydrogen atoms,” Science 352, 437–441 (2016)., Google ScholarCrossref
  33. 33. C. B. Crook, C. Constantin, T. Ahmed, J.-X. Zhu, A. V. Balatsky, and J. T. Haraldsen, “ Proximity-induced magnetism in transition-metal substituted graphene,” Sci. Rep. 5, 12322 (2015)., Google ScholarCrossref
  34. 34. F. M. Hu, T. Ma, H.-Q. Lin, and J. E. Gubernatis, “ Magnetic impurities in graphene,” Phys. Rev. B 84, 075414 (2011)., Google ScholarCrossref
  35. 35. E. J. G. Santos, A. Ayuela, and D. Sanchez-Portal, “ First-principles study of substitutional metal impurities in graphene: Structural, electronic and magnetic properties,” New J. Phys. 12, 053012 (2010)., Google ScholarCrossref
  36. 36. J. Thakur, H. S. Saini, M. Singh, A. H. Reshak, and M. K. Kashyap, “ Quest for magnetism in graphene via Cr- and Mo-doping: A DFT approach,” Physica E 78, 35–40 (2016)., Google ScholarCrossref
  37. 37. S. Saha, M. Baskey, and D. Majumdar, “ Graphene quantum sheets: A new material for spintronic applications,” Adv. Mater. 22, 5531–5536 (2010)., Google ScholarCrossref
  38. 38. K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, “ Designer Dirac fermions and topological phases in molecular graphene,” Nature 483, 306–310 (2012)., Google ScholarCrossref
  39. 39. See for Atomistix ToolKit version 13.8, QuantumWise A/S. Google Scholar
  40. 40. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “ Density-functional method for nonequilibrium electron transport,” Phys. Rev. B 65, 165401 (2002)., Google ScholarCrossref, ISI
  41. 41. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “ The SIESTA method for ab initio order-N materials simulation,” J. Phys.: Condens. Matter 14, 2745 (2002)., Google ScholarCrossref, ISI
  42. 42. J. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996)., Google ScholarCrossref, ISI
  43. 43. G. Houchins, C. B. Crook, J.-X. Zhu, A. V. Balatsky, and J. T. Haraldsen, “ Voltage-dependent spin flip in magnetically substituted graphene nanoribbons: Towards the realization of graphene-based spintronic devices,” Phys. Rev. B 95, 155450 (2017)., Google ScholarCrossref
  44. 44. J. T. Haraldsen, T. Barnes, and J. L. Musfeldt, “ Neutron scattering and magnetic observables for S=1/2 spin clusters and molecular magnets,” Phys. Rev. B 71, 064403 (2005)., Google ScholarCrossref
  45. 45. J. T. Haraldsen and R. S. Fishman, “ Spin rotation technique for non-collinear magnetic systems: Application to the generalized Villain model,” J. Phys.: Condens. Matter 21, 216001 (2009)., Google ScholarCrossref
  46. 46. J. T. Haraldsen, “ Evolution of thermodynamic properties and inelastic neutron scattering intensities for spin-1/2 antiferromagnetic quantum rings,” Phys. Rev. B 94, 054436 (2016)., Google ScholarCrossref
  1. © 2018 Author(s). Published by AIP Publishing.