ABSTRACT
Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD)51 and its generalization, the extended-DMD (EDMD), are becoming increasingly popular in practical applications. The EDMD improves upon the classical DMD by the inclusion of a flexible choice of dictionary of observables which spans a finite dimensional subspace on which the Koopman operator can be approximated. This enhances the accuracy of the solution reconstruction and broadens the applicability of the Koopman formalism. Although the convergence of the EDMD has been established, applying the method in practice requires a careful choice of the observables to improve convergence with just a finite number of terms. This is especially difficult for high dimensional and highly nonlinear systems. In this paper, we employ ideas from machine learning to improve upon the EDMD method. We develop an iterative approximation algorithm which couples the EDMD with a trainable dictionary represented by an artificial neural network. Using the Duffing oscillator and the Kuramoto Sivashinsky partical differential equation as examples, we show that our algorithm can effectively and efficiently adapt the trainable dictionary to the problem at hand to achieve good reconstruction accuracy without the need to choose a fixed dictionary a priori. Furthermore, to obtain a given accuracy, we require fewer dictionary terms than EDMD with fixed dictionaries. This alleviates an important shortcoming of the EDMD algorithm and enhances the applicability of the Koopman framework to practical problems.
ACKNOWLEDGMENTS
The work of I.G.K. was partially supported by DARPA-MoDyL (HR0011-16-C-0116) and by the U.S. National Science Foundation (ECCS-1462241). I.G.K. and F.D. are grateful for the hospitality and support of the IAS-TUM. F.D. is also grateful for the support from the TopMath Graduate Center of TUM Graduate School at the Technical University of Munich, Germany, and from the TopMath Program at the Elite Network of Bavaria. E.M.B. thanks the Army Research Office (N68164-EG) and the Office of Naval Research (N00014-15-1-2093). Q.L. is grateful for the support of the Agency for Science, Technology and Research, Singapore.
REFERENCES
- 1. I. Mezić and A. Banaszuk, “ Comparison of systems with complex behavior,” Physica D 197, 101 (2004). https://doi.org/10.1016/j.physd.2004.06.015, Google ScholarCrossref, ISI
- 2. I. Mezić, “ Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dyn. 41, 309–325 (2005). https://doi.org/10.1007/s11071-005-2824-x, Google ScholarCrossref, ISI
- 3. B. O. Koopman, “ Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. U.S.A. 17, 315–318 (1931). https://doi.org/10.1073/pnas.17.5.315, Google ScholarCrossref
- 4. J. v. Neumann, “ Zur operatorenmethode in der klassischen mechanik,” Ann. Math. 33, 587–642 (1932). https://doi.org/10.2307/1968537, Google ScholarCrossref
- 5. P. R. Halmos and J. von Neumann, “ Operator methods in classical mechanics, II,” Ann. Math. 43, 332–350 (1942). https://doi.org/10.2307/1968872, Google ScholarCrossref
- 6. P. R. Halmos, P. R. Halmos, P. R. Halmos, H. Mathématicien, P. R. Halmos, and H. Mathematician, Introduction to Hilbert Space and the Theory of Spectral Multiplicity ( Chelsea Publishing Company, Chelsea New York, 1957). Google Scholar
- 7. C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, “ Spectral analysis of nonlinear flows,” J. Fluid Mech. 641, 115–127 (2009). https://doi.org/10.1017/S0022112009992059, Google ScholarCrossref, ISI
- 8. M. Budišić, R. Mohr, and I. Mezić, “ Applied Koopmanism,” Chaos 22, 047510 (2012). https://doi.org/10.1063/1.4772195, Google ScholarScitation, ISI
- 9. M. O. Williams, C. W. Rowley, I. Mezić, and I. G. Kevrekidis, “ Data fusion via intrinsic dynamic variables: An application of data-driven koopman spectral analysis,” Europhys. Lett. 109, 40007 (2015). https://doi.org/10.1209/0295-5075/109/40007, Google ScholarCrossref
- 10. D. Giannakis, J. Slawinska, and Z. Zhao, “ Spatiotemporal feature extraction with data-driven Koopman operators,” J. Mach. Learn. Res. Proc. 44, 103–115 (2015). Google Scholar
- 11. S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “ Koopman invariant subspaces and finite linear representation of nonlinear dynamical systems for control,” PloS One 11, e0150171 (2016). https://doi.org/10.1371/journal.pone.0150171, Google ScholarCrossref
- 12. M. Korda and I. Mezić, “ Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” e-print arXiv:1703.10112. Google Scholar
- 13. I. Mezić, “ Analysis of fluid flows via spectral properties of the Koopman operator,” Annu. Rev. Fluid Mech. 45, 357–378 (2013). https://doi.org/10.1146/annurev-fluid-011212-140652, Google ScholarCrossref, ISI
- 14. A. S. Sharma, I. Mezić, and B. J. McKeon, “ Correspondence between koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations,” Phys. Rev. Fluids 1, 032402 (2016). https://doi.org/10.1103/PhysRevFluids.1.032402, Google ScholarCrossref
- 15. M. Georgescu and I. Mezić, “ Building energy modeling: A systematic approach to zoning and model reduction using koopman mode analysis,” Energy Build. 86, 794–802 (2015). https://doi.org/10.1016/j.enbuild.2014.10.046, Google ScholarCrossref
- 16. H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, and F. Noć, “ Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations,” J. Chem. Phys. 146, 154104 (2017). https://doi.org/10.1063/1.4979344, Google ScholarScitation, ISI
- 17. A. Mauroy, I. Mezić, and J. Moehlis, “ Isostables, isochrons, and koopman spectrum for the action–angle representation of stable fixed point dynamics,” Physica D 261, 19–30 (2013). https://doi.org/10.1016/j.physd.2013.06.004, Google ScholarCrossref
- 18. D. Giannakis, “ Data-driven spectral decomposition and forecasting of ergodic dynamical systems,” Applied and Computational Harmonic Analysis (to be published). Google Scholar
- 19. S. Klus, N. Peter, K. Peter, W. Hao, K. Ioannis, S. Christof, and N. Frank, “ Data-driven model reduction and transfer operator approximation,” J. Nonlinear Sci. (unpublished). Google Scholar
- 20. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “ Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc. Natl. Acad. Sci. U.S.A. 113, 3932–3937 (2016). https://doi.org/10.1073/pnas.1517384113, Google ScholarCrossref, ISI
- 21. P. J. Schmid, “ Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/S0022112010001217, Google ScholarCrossref, ISI
- 22. M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “ A kernel approach to data-driven koopman spectral analysis,” preprint arXiv:1411.2260 (2014). Google Scholar
- 23. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “ A data–driven approximation of the koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci. 25, 1307–1346 (2015). https://doi.org/10.1007/s00332-015-9258-5, Google ScholarCrossref
- 24. M. Korda and I. Mezić, “ On convergence of extended dynamic mode decomposition to the koopman operator,” e-print arXiv:1703.04680v1. Google Scholar
- 25. R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces ( Elsevier, 1993), Vol. 179. Google Scholar
- 26. C. W. Rowley, see http://online.kitp.ucsb.edu/online/transturb-c17/rowley/ for “ Data-driven methods for identifying nonlinear models of fluid flows” (2017). Google Scholar
- 27. D. L. Donoho, “ Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582, Google ScholarCrossref, ISI
- 28. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung ( Universitat Helsinki, 1947), Vol. 37. Google Scholar
- 29. M. Loeve, Probability Theory, Vol. II, Graduate Texts in Mathematics ( Springer-Verlag New York, 1978), Vol. 46, p. 387. Google ScholarCrossref
- 30. A. N. Tikhonov, A. V Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posted Problems (Springer Science and Business Media, 2013), Vol. 328. Google Scholar
- 31. A. Y. Ng, “ Feature selection, l 1 vs. l 2 regularization, and rotational invariance,” in Proceedings of the Twenty-First International Conference on Machine Learning (ACM, 2004), p. 78. Google ScholarCrossref
- 32. G. H. Golub and C. F. van Loan, Matrix Computations ( JHU Press, 2012), Vol. 3. Google Scholar
- 33. S. Ruder, “ An overview of gradient descent optimization algorithms,” e-print arXiv:1609.04747. Google Scholar
- 34. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations ( Springer Science & Business Media, 2012), Vol. 70. Google Scholar
- 35. M. Jolly, I. Kevrekidis, and E. Titi, “ Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations,” Physica D 44, 38–60 (1990). https://doi.org/10.1016/0167-2789(90)90046-R, Google ScholarCrossref, ISI
- 36. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems ( Wiley-Interscience New York, 1972), Vol. 1. Google Scholar
- 37. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems ( 2012), pp. 1097–1105. Google Scholar
- 38. Y. LeCun, Y. Bengio et al., “ Convolutional networks for images, speech, and time series,” in The Handbook of Brain Theory and Neural Networks (1995), Vol. 3361, p. 1995. Google Scholar
- 39. Y. LeCun, K. Kavukcuoglu, and C. Farabet, “ Convolutional networks and applications in vision,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2010), pp. 253–256. Google ScholarCrossref
- 40. Y. LeCun, Y. Bengio, and G. Hinton, “ Deep learning,” Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539, Google ScholarCrossref, ISI
- 41. F. Bach and E. Moulines, “ Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n),” in Advances in Neural Information Processing Systems (2013) pp. 773–781. Google Scholar
- 42. R. A. DeVore, “ Nonlinear approximation,” Acta Numer. 7, 51–150 (1998). https://doi.org/10.1017/S0962492900002816, Google ScholarCrossref
- 43. T. Sauer, J. A. Yorke, and M. Casdagli, “ Embedology,” J. Stat. Phys. 65, 579–616 (1991). https://doi.org/10.1007/BF01053745, Google ScholarCrossref, ISI
- 44. A. Kolmogoroff, “ Über die analytischen methoden in der wahrscheinlichkeitsrechnung,” Math. Ann. 104, 415–458 (1931). https://doi.org/10.1007/BF01457949, Google ScholarCrossref
- 45. J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “ On dynamic mode decomposition: Theory and applications,” J. Comput. Dyn. 1, 391–421 (2014). https://doi.org/10.3934/jcd.2014.1.391, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.