No Access Submitted: 15 June 2017 Accepted: 30 July 2017 Published Online: 15 August 2017
Review of Scientific Instruments 88, 086109 (2017); https://doi.org/10.1063/1.4990451
more...View Affiliations
View Contributors
  • Michael G. Ruppert
  • Yuen K. Yong
The quality (Q) factor is an important parameter of the resonance of the microcantilever as it determines both imaging bandwidth and force sensitivity. The ability to control the Q factor of multiple modes is believed to be of great benefit for atomic force microscopy techniques involving multiple eigenmodes. In this paper, we propose a novel cantilever design employing multiple piezoelectric transducers which are used for separated actuation and sensing, leading to guaranteed collocation of the first eight eigenmodes up to 3MHz. The design minimizes the feedthrough usually observed with these systems by incorporating a guard trace on the cantilever chip. As a result, a multimode Q controller is demonstrated to be able to modify the quality factor of the first two eigenmodes over up to four orders of magnitude without sacrificing robust stability.
  1. 1. F. J. Giessibl, Science 267, 68 (1995). https://doi.org/10.1126/science.267.5194.68, Google ScholarCrossref
  2. 2. E. T. Herruzo, A. P. Perrino, and R. Garcia, Nat. Commun. 5, 3126 (2014). https://doi.org/10.1038/ncomms4126, Google ScholarCrossref
  3. 3. T. Ando, T. Uchihashi, and T. Fukuma, Prog. Surf. Sci. 83, 337 (2008). https://doi.org/10.1016/j.progsurf.2008.09.001, Google ScholarCrossref
  4. 4. A. S. Paulo and R. García, Phys. Rev. B 64, 193411 (2001). https://doi.org/10.1103/physrevb.64.193411, Google ScholarCrossref
  5. 5. B. Anczykowski, B. Gotsmann, H. Fuchs, J. P. Cleveland, and V. Elings, Appl. Surf. Sci. 140, 376 (1999). https://doi.org/10.1016/s0169-4332(98)00558-3, Google ScholarCrossref
  6. 6. J. Mertz, O. Marti, and J. Mlynek, Appl. Phys. Lett. 62, 2344 (1993). https://doi.org/10.1063/1.109413, Google ScholarScitation, ISI
  7. 7. T. Sulchek, R. Hsieh, J. D. Adams, G. G. Yaralioglu, S. C. Minne, and C. F. Quate, Appl. Phys. Lett. 76(11), 1473 (2000). https://doi.org/10.1063/1.126071, Google ScholarScitation
  8. 8. A. Humphris, A. Round, and M. Miles, Surf. Sci. 491, 468 (2001). https://doi.org/10.1016/s0039-6028(01)01312-7, Google ScholarCrossref
  9. 9. J. Tamayo, A. D. L. Humphris, and M. J. Miles, Appl. Phys. Lett. 77, 582 (2000). https://doi.org/10.1063/1.127051, Google ScholarScitation, ISI
  10. 10. T. R. Rodriguez and R. Garcia, Appl. Phys. Lett. 82, 4821 (2003). https://doi.org/10.1063/1.1584790, Google ScholarScitation, ISI
  11. 11. R. W. Stark, in 5th IEEE Conference on Nanotechnology (IEEE, 2005), Vol. 1, pp. 259–262. Google Scholar
  12. 12. H. Hölscher, D. Ebeling, and U. D. Schwarz, J. Appl. Phys. 99, 084311 (2006). https://doi.org/10.1063/1.2190070, Google ScholarScitation, ISI
  13. 13. M. W. Fairbairn and S. O. R. Moheimani, Rev. Sci. Instrum. 83, 083708 (2012). https://doi.org/10.1063/1.4746277, Google ScholarScitation, ISI
  14. 14. M. G. Ruppert and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 24, 1149 (2016). https://doi.org/10.1109/tcst.2015.2478077, Google ScholarCrossref
  15. 15. M. G. Ruppert and S. O. R. Moheimani, in Proccedings of ASME International Design Engineering Technical Conference and the Computer and Information in Engineering Conference (IDETC/CIE) (ASME, Boston, Massachusetts, USA, 2015), Vol. 4, p. V004T09A009. Google Scholar
  16. 16. T. Itoh and T. Suga, Nanotechnology 4, 218 (1993). https://doi.org/10.1088/0957-4484/4/4/007, Google ScholarCrossref
  17. 17. M. G. Ruppert and S. O. R. Moheimani, Beilstein J. Nanotechnol. 7, 284 (2016). https://doi.org/10.3762/bjnano.7.26, Google ScholarCrossref
  18. 18. S. I. Moore, M. G. Ruppert, and Y. K. Yong, Beilstein J. Nanotechnol. 8, 358 (2017). https://doi.org/10.3762/bjnano.8.38, Google ScholarCrossref
  19. 19. I. Petersen and A. Lanzon, IEEE Control Syst. Mag. 30, 54 (2010). https://doi.org/10.1109/mcs.2010.937676, Google ScholarCrossref
  20. 20. S. Sadewasser, G. Villanueva, and J. A. Plaza, Rev. Sci. Instrum. 77, 073703 (2006). https://doi.org/10.1063/1.2219738, Google ScholarScitation, ISI
  21. 21. M. G. Ruppert and S. O. R. Moheimani, Rev. Sci. Instrum. 84, 125006 (2013). https://doi.org/10.1063/1.4841855, Google ScholarScitation
  22. 22. A. Cowen, G. Hames, K. Glukh, and B. Hardy, PiezoMUMPs Design Handbook, 1st ed. (MEMSCAP Inc., 2014). Google Scholar
  23. 23. S. O. R. Moheimani and A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping (Springer-Verlag London Limited, 2006). Google Scholar
  24. 24. J. Fanson and T. K. Caughey, AIAA J. 28, 717 (1990). https://doi.org/10.2514/3.10451, Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.