ABSTRACT
The dynamics of many glassy systems are known to exhibit string-like hopping motions each consisting of a line of particles displacing one another. By using the molecular dynamics simulations of glassy polymers, we show that these motions become highly repetitive back-and-forth motions as temperature decreases and do not necessarily contribute to net displacements. Particle hops which constitute string-like motions are reversed with a high probability, reaching 73% and beyond at low temperature. The structural relaxation rate is then dictated not by a simple particle hopping rate but instead by the rate at which particles break away from hopping repetitions. We propose that disruption of string repetitions and hence also structural relaxations are brought about by pair-interactions between strings.
ACKNOWLEDGMENTS
We thank D. A. Weitz for suggesting the use of a quasi-particle view of void. We also thank O. K. C. Tsui and M. Isobe for many helpful discussions. We are grateful for the support of Hong Kong GRF (Grant No. 15301014).
- 1. G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301 (2013). https://doi.org/10.1063/1.4795539, Google ScholarScitation, ISI
- 2. F. H. Stillinger and P. G. Debenedetti, Annu. Rev. Condens. Matter Phys. 4, 263 (2013). https://doi.org/10.1146/annurev-conmatphys-030212-184329, Google ScholarCrossref, ISI
- 3. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011). https://doi.org/10.1103/revmodphys.83.587, Google ScholarCrossref, ISI
- 4. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965). https://doi.org/10.1063/1.1696442, Google ScholarScitation, ISI
- 5. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989). https://doi.org/10.1103/physreva.40.1045, Google ScholarCrossref, ISI
- 6. J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nat. Phys. 2, 268 (2006). https://doi.org/10.1038/nphys261, Google ScholarCrossref, ISI
- 7. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006). https://doi.org/10.1103/revmodphys.78.953, Google ScholarCrossref, ISI
- 8. W. Gőtze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, International Series of Monographs on Physics (Oxford University Press, Oxford, 2008). Google ScholarCrossref
- 9. G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53, 1244 (1984). https://doi.org/10.1103/physrevlett.53.1244, Google ScholarCrossref
- 10. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984). https://doi.org/10.1103/physrevlett.53.958, Google ScholarCrossref, ISI
- 11. F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003). https://doi.org/10.1080/0001873031000093582, Google ScholarCrossref, ISI
- 12. D. Chandler and J. P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010). https://doi.org/10.1146/annurev.physchem.040808.090405, Google ScholarCrossref, ISI
- 13. J. L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010). https://doi.org/10.1039/b927044b, Google ScholarCrossref, ISI
- 14. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998). https://doi.org/10.1103/physrevlett.80.2338, Google ScholarCrossref
- 15. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999). https://doi.org/10.1103/physreve.60.3107, Google ScholarCrossref
- 16. Y. Gebremichael, M. Vogel, and S. C. Glotzer, J. Chem. Phys. 120, 4415 (2004). https://doi.org/10.1063/1.1644539, Google ScholarScitation, ISI
- 17. M. Aichele, Y. Gebremichael, F. Starr, J. Baschnagel, and S. Glotzer, J. Chem. Phys. 119, 5290 (2003). https://doi.org/10.1063/1.1597473, Google ScholarScitation, ISI
- 18. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000). https://doi.org/10.1126/science.287.5453.627, Google ScholarCrossref, ISI
- 19. Z. Zhang, P. J. Yunker, P. Habdas, and A. G. Yodh, Phys. Rev. Lett. 107, 208303 (2011). https://doi.org/10.1103/physrevlett.107.208303, Google ScholarCrossref
- 20. T. Kawasaki and A. Onuki, Phys. Rev. E 87, 012312 (2013). https://doi.org/10.1103/physreve.87.012312, Google ScholarCrossref
- 21. A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011). https://doi.org/10.1103/physrevx.1.029901, Google ScholarCrossref
- 22. H. Zhang and J. F. Douglas, Soft Matter 9, 1266 (2013). https://doi.org/10.1039/c2sm27533c, Google ScholarCrossref
- 23. M. Isobe, A. S. Keys, D. Chandler, and J. P. Garrahan, Phys. Rev. Lett. 117, 145701 (2016). https://doi.org/10.1103/physrevlett.117.145701, Google ScholarCrossref, ISI
- 24. G. Wahnström, Phys. Rev. A 44, 3752 (1991). https://doi.org/10.1103/physreva.44.3752, Google ScholarCrossref, ISI
- 25. S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393, 554 (1998). https://doi.org/10.1038/31189, Google ScholarCrossref, ISI
- 26. H. Miyagawa, Y. Hiwatari, B. Bernu, and J. Hansen, J. Chem. Phys. 88, 3879 (1988). https://doi.org/10.1063/1.453836, Google ScholarScitation, ISI
- 27. K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004). https://doi.org/10.1063/1.1778155, Google ScholarScitation, ISI
- 28. M. Vogel, Macromolecules 41, 2949 (2008). https://doi.org/10.1021/ma7024072, Google ScholarCrossref
- 29. J. W. Ahn, B. Falahee, C. D. Piccolo, M. Vogel, and D. Bingemann, J. Chem. Phys. 138, 12A527 (2013). https://doi.org/10.1063/1.4775740, Google ScholarScitation, ISI
- 30. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, and J. Baschnagel, Phys. Rev. E 89, 042603 (2014). https://doi.org/10.1103/physreve.89.042604, Google ScholarCrossref
- 31. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990). https://doi.org/10.1063/1.458541, Google ScholarScitation, ISI
- 32. F. Varnik and K. Binder, J. Chem. Phys. 117, 6336 (2002). https://doi.org/10.1063/1.1503770, Google ScholarScitation, ISI
- 33. C.-H. Lam and O. K. C. Tsui, Phys. Rev. E 88, 042604 (2013). https://doi.org/10.1103/physreve.88.042604, Google ScholarCrossref
- 34. J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008). https://doi.org/10.1016/j.jcp.2008.01.047, Google ScholarCrossref, ISI
- 35. See http://apricot.ap.polyu.edu.hk/string for movies and an animation. Google Scholar
- 36. S. Swayamjyoti, J. Löffler, and P. M. Derlet, Phys. Rev. B 89, 224201 (2014). https://doi.org/10.1103/physrevb.89.224201, Google ScholarCrossref
- 37. A. H. Marcus, J. Schofield, and S. A. Rice, Phys. Rev. E 60, 5725 (1999). https://doi.org/10.1103/physreve.60.5725, Google ScholarCrossref
- 38. S. Peter, H. Meyer, J. Baschnagel, and R. Seemann, J. Phys.: Condens. Matter 19, 205119 (2007). https://doi.org/10.1088/0953-8984/19/20/205119, Google ScholarCrossref, ISI
- 39. D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 120 (1961). https://doi.org/10.1063/1.1731549, Google ScholarScitation, ISI
- 40. F. W. Starr, S. Sastry, J. F. Douglas, and S. C. Glotzer, Phys. Rev. Lett. 89, 125501 (2002). https://doi.org/10.1103/physrevlett.89.125501, Google ScholarCrossref, ISI
- 41. J. Conrad, F. W. Starr, and D. Weitz, J. Phys. Chem. B 109, 21235 (2005). https://doi.org/10.1021/jp0514168, Google ScholarCrossref, ISI
- 42. A. Widmer-Cooper and P. Harrowell, J. Non-Cryst. Solids 352, 5098 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.136, Google ScholarCrossref
- 43. L.-H. Zhang and C.-H. Lam, Phys. Rev. B 95, 184202 (2017). https://doi.org/10.1103/physrevb.95.184202, Google ScholarCrossref
- 44. C.-H. Lam, e-print arXiv:1611.03586 (2016). Google Scholar
- 45. G. H. Fredrickson and H. C. Andersen, J. Chem. Phys. 83, 5822 (1985). https://doi.org/10.1063/1.449662, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.