No Access Submitted: 11 April 2017 Accepted: 14 June 2017 Published Online: 29 June 2017
J. Chem. Phys. 146, 244906 (2017); https://doi.org/10.1063/1.4990417
The dynamics of many glassy systems are known to exhibit string-like hopping motions each consisting of a line of particles displacing one another. By using the molecular dynamics simulations of glassy polymers, we show that these motions become highly repetitive back-and-forth motions as temperature decreases and do not necessarily contribute to net displacements. Particle hops which constitute string-like motions are reversed with a high probability, reaching 73% and beyond at low temperature. The structural relaxation rate is then dictated not by a simple particle hopping rate but instead by the rate at which particles break away from hopping repetitions. We propose that disruption of string repetitions and hence also structural relaxations are brought about by pair-interactions between strings.
We thank D. A. Weitz for suggesting the use of a quasi-particle view of void. We also thank O. K. C. Tsui and M. Isobe for many helpful discussions. We are grateful for the support of Hong Kong GRF (Grant No. 15301014).
  1. 1. G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301 (2013). https://doi.org/10.1063/1.4795539, Google ScholarScitation, ISI
  2. 2. F. H. Stillinger and P. G. Debenedetti, Annu. Rev. Condens. Matter Phys. 4, 263 (2013). https://doi.org/10.1146/annurev-conmatphys-030212-184329, Google ScholarCrossref, ISI
  3. 3. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011). https://doi.org/10.1103/revmodphys.83.587, Google ScholarCrossref, ISI
  4. 4. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965). https://doi.org/10.1063/1.1696442, Google ScholarScitation, ISI
  5. 5. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989). https://doi.org/10.1103/physreva.40.1045, Google ScholarCrossref, ISI
  6. 6. J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nat. Phys. 2, 268 (2006). https://doi.org/10.1038/nphys261, Google ScholarCrossref, ISI
  7. 7. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006). https://doi.org/10.1103/revmodphys.78.953, Google ScholarCrossref, ISI
  8. 8. W. Gőtze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, International Series of Monographs on Physics (Oxford University Press, Oxford, 2008). Google ScholarCrossref
  9. 9. G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53, 1244 (1984). https://doi.org/10.1103/physrevlett.53.1244, Google ScholarCrossref
  10. 10. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984). https://doi.org/10.1103/physrevlett.53.958, Google ScholarCrossref, ISI
  11. 11. F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003). https://doi.org/10.1080/0001873031000093582, Google ScholarCrossref, ISI
  12. 12. D. Chandler and J. P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010). https://doi.org/10.1146/annurev.physchem.040808.090405, Google ScholarCrossref, ISI
  13. 13. J. L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010). https://doi.org/10.1039/b927044b, Google ScholarCrossref, ISI
  14. 14. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998). https://doi.org/10.1103/physrevlett.80.2338, Google ScholarCrossref
  15. 15. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999). https://doi.org/10.1103/physreve.60.3107, Google ScholarCrossref
  16. 16. Y. Gebremichael, M. Vogel, and S. C. Glotzer, J. Chem. Phys. 120, 4415 (2004). https://doi.org/10.1063/1.1644539, Google ScholarScitation, ISI
  17. 17. M. Aichele, Y. Gebremichael, F. Starr, J. Baschnagel, and S. Glotzer, J. Chem. Phys. 119, 5290 (2003). https://doi.org/10.1063/1.1597473, Google ScholarScitation, ISI
  18. 18. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000). https://doi.org/10.1126/science.287.5453.627, Google ScholarCrossref, ISI
  19. 19. Z. Zhang, P. J. Yunker, P. Habdas, and A. G. Yodh, Phys. Rev. Lett. 107, 208303 (2011). https://doi.org/10.1103/physrevlett.107.208303, Google ScholarCrossref
  20. 20. T. Kawasaki and A. Onuki, Phys. Rev. E 87, 012312 (2013). https://doi.org/10.1103/physreve.87.012312, Google ScholarCrossref
  21. 21. A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011). https://doi.org/10.1103/physrevx.1.029901, Google ScholarCrossref
  22. 22. H. Zhang and J. F. Douglas, Soft Matter 9, 1266 (2013). https://doi.org/10.1039/c2sm27533c, Google ScholarCrossref
  23. 23. M. Isobe, A. S. Keys, D. Chandler, and J. P. Garrahan, Phys. Rev. Lett. 117, 145701 (2016). https://doi.org/10.1103/physrevlett.117.145701, Google ScholarCrossref, ISI
  24. 24. G. Wahnström, Phys. Rev. A 44, 3752 (1991). https://doi.org/10.1103/physreva.44.3752, Google ScholarCrossref, ISI
  25. 25. S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393, 554 (1998). https://doi.org/10.1038/31189, Google ScholarCrossref, ISI
  26. 26. H. Miyagawa, Y. Hiwatari, B. Bernu, and J. Hansen, J. Chem. Phys. 88, 3879 (1988). https://doi.org/10.1063/1.453836, Google ScholarScitation, ISI
  27. 27. K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004). https://doi.org/10.1063/1.1778155, Google ScholarScitation, ISI
  28. 28. M. Vogel, Macromolecules 41, 2949 (2008). https://doi.org/10.1021/ma7024072, Google ScholarCrossref
  29. 29. J. W. Ahn, B. Falahee, C. D. Piccolo, M. Vogel, and D. Bingemann, J. Chem. Phys. 138, 12A527 (2013). https://doi.org/10.1063/1.4775740, Google ScholarScitation, ISI
  30. 30. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, and J. Baschnagel, Phys. Rev. E 89, 042603 (2014). https://doi.org/10.1103/physreve.89.042604, Google ScholarCrossref
  31. 31. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990). https://doi.org/10.1063/1.458541, Google ScholarScitation, ISI
  32. 32. F. Varnik and K. Binder, J. Chem. Phys. 117, 6336 (2002). https://doi.org/10.1063/1.1503770, Google ScholarScitation, ISI
  33. 33. C.-H. Lam and O. K. C. Tsui, Phys. Rev. E 88, 042604 (2013). https://doi.org/10.1103/physreve.88.042604, Google ScholarCrossref
  34. 34. J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008). https://doi.org/10.1016/j.jcp.2008.01.047, Google ScholarCrossref, ISI
  35. 35. See http://apricot.ap.polyu.edu.hk/string for movies and an animation. Google Scholar
  36. 36. S. Swayamjyoti, J. Löffler, and P. M. Derlet, Phys. Rev. B 89, 224201 (2014). https://doi.org/10.1103/physrevb.89.224201, Google ScholarCrossref
  37. 37. A. H. Marcus, J. Schofield, and S. A. Rice, Phys. Rev. E 60, 5725 (1999). https://doi.org/10.1103/physreve.60.5725, Google ScholarCrossref
  38. 38. S. Peter, H. Meyer, J. Baschnagel, and R. Seemann, J. Phys.: Condens. Matter 19, 205119 (2007). https://doi.org/10.1088/0953-8984/19/20/205119, Google ScholarCrossref, ISI
  39. 39. D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 120 (1961). https://doi.org/10.1063/1.1731549, Google ScholarScitation, ISI
  40. 40. F. W. Starr, S. Sastry, J. F. Douglas, and S. C. Glotzer, Phys. Rev. Lett. 89, 125501 (2002). https://doi.org/10.1103/physrevlett.89.125501, Google ScholarCrossref, ISI
  41. 41. J. Conrad, F. W. Starr, and D. Weitz, J. Phys. Chem. B 109, 21235 (2005). https://doi.org/10.1021/jp0514168, Google ScholarCrossref, ISI
  42. 42. A. Widmer-Cooper and P. Harrowell, J. Non-Cryst. Solids 352, 5098 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.136, Google ScholarCrossref
  43. 43. L.-H. Zhang and C.-H. Lam, Phys. Rev. B 95, 184202 (2017). https://doi.org/10.1103/physrevb.95.184202, Google ScholarCrossref
  44. 44. C.-H. Lam, e-print arXiv:1611.03586 (2016). Google Scholar
  45. 45. G. H. Fredrickson and H. C. Andersen, J. Chem. Phys. 83, 5822 (1985). https://doi.org/10.1063/1.449662, Google ScholarScitation, ISI
  1. © 2017 Author(s). Published by AIP Publishing.