No Access Submitted: 12 June 2017 Accepted: 05 August 2017 Published Online: 23 August 2017
J. Chem. Phys. 147, 084902 (2017); https://doi.org/10.1063/1.4989764
more...View Affiliations
We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.
S.P. and M.D. acknowledge the funding from the Industrial Partnership Program “Computational Sciences for Energy Research” (Grant No. 14CSER020) of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). This research programme is co-financed by Shell Global Solutions International B.V. V.P. and L.F. acknowledge funding from the Dutch Sector Plan Physics and Chemistry, and L.F. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO-VENI Grant No. 680.47.432). We would also like to thank Berend v. d. Meer for careful reading of the manuscript and Robert Evans for useful discussions.
  1. 1. V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105 (2007). https://doi.org/10.1126/science.1140414, Google ScholarCrossref
  2. 2. R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D. Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351 (2014). https://doi.org/10.1038/ncomms5351, Google ScholarCrossref
  3. 3. S. C. Takatori and J. F. Brady, Soft Matter 11, 7920 (2015). https://doi.org/10.1039/c5sm01792k, Google ScholarCrossref
  4. 4. U. Marini Bettolo Marconi and C. Maggi, Soft Matter 11, 8768 (2015). https://doi.org/10.1039/c5sm01718a, Google ScholarCrossref
  5. 5. A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates, and J. Tailleur, Phys. Rev. Lett. 114, 198301 (2015). https://doi.org/10.1103/physrevlett.114.198301, Google ScholarCrossref
  6. 6. G. Falasco, F. Baldovin, K. Kroy, and M. Baiesi, New J. Phys. 18, 093043 (2016). https://doi.org/10.1088/1367-2630/18/9/093043, Google ScholarCrossref
  7. 7. T. Speck and R. L. Jack, Phys. Rev. E 93, 062605 (2015). https://doi.org/10.1103/physreve.93.062605, Google ScholarCrossref
  8. 8. F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, and C. Cottin-Bizonne, Phys. Rev. X 5, 011004 (2015). https://doi.org/10.1103/physrevx.5.011004, Google ScholarCrossref
  9. 9. T. Speck, Europhys. Lett. 114, 30006 (2016). https://doi.org/10.1209/0295-5075/114/30006, Google ScholarCrossref
  10. 10. S. Herminghaus and M. G. Mazza, Soft Matter 13, 898 (2017). https://doi.org/10.1039/C6SM02224C, Google ScholarCrossref
  11. 11. J. P. Clewett, J. Wade, R. Bowley, S. Herminghaus, M. R. Swift, and M. G. Mazza, Sci. Rep. 6, 28726 (2016). https://doi.org/10.1038/srep28726, Google ScholarCrossref
  12. 12. J. P. Clewett, K. Roeller, R. M. Bowley, S. Herminghaus, and M. R. Swift, Phys. Rev. Lett. 109, 228002 (2012). https://doi.org/10.1103/physrevlett.109.228002, Google ScholarCrossref
  13. 13. A. Wysocki, R. G. Winkler, and G. Gompper, Europhys. Lett. 105, 48004 (2014). https://doi.org/10.1209/0295-5075/105/48004, Google ScholarCrossref
  14. 14. J. Stenhammar, D. Marenduzzo, R. J. Allen, and M. E. Cates, Soft Matter 10, 1489 (2014). https://doi.org/10.1039/c3sm52813h, Google ScholarCrossref
  15. 15. J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008). https://doi.org/10.1103/physrevlett.100.218103, Google ScholarCrossref
  16. 16. Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012). https://doi.org/10.1103/physrevlett.108.235702, Google ScholarCrossref
  17. 17. J. Bialké, H. Löwen, and T. Speck, Europhys. Lett. 103, 30008 (2013). https://doi.org/10.1209/0295-5075/103/30008, Google ScholarCrossref
  18. 18. C. F. Lee, Soft Matter 13, 376 (2017). https://doi.org/10.1039/c6sm01978a, Google ScholarCrossref
  19. 19. T. F. F. Farage, P. Krinninger, and J. M. Brader, Phys. Rev. E 91, 042310 (2015). https://doi.org/10.1103/physreve.91.042310, Google ScholarCrossref
  20. 20. G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev. Lett. 110, 055701 (2012). https://doi.org/10.1103/physrevlett.110.055701, Google ScholarCrossref
  21. 21. G. S. Redner, A. Baskaran, and M. F. Hagan, Phys. Rev. E 88, 012305 (2013). https://doi.org/10.1103/physreve.88.012305, Google ScholarCrossref
  22. 22. M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010 (2013). https://doi.org/10.1209/0295-5075/101/20010, Google ScholarCrossref
  23. 23. J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and M. E. Cates, Phys. Rev. Lett. 111, 145702 (2013). https://doi.org/10.1103/physrevlett.111.145702, Google ScholarCrossref
  24. 24. Y. Fily, S. Henkes, and M. C. Marchetti, Soft Matter 10, 2132 (2014). https://doi.org/10.1039/c3sm52469h, Google ScholarCrossref
  25. 25. S. C. Takatori, W. Yan, and J. F. Brady, Phys. Rev. Lett. 113, 028103 (2014). https://doi.org/10.1103/physrevlett.113.028103, Google ScholarCrossref
  26. 26. A. Zöttl and H. Stark, Phys. Rev. Lett. 112, 118101 (2014). https://doi.org/10.1103/physrevlett.112.118101, Google ScholarCrossref
  27. 27. J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett. 115, 098301 (2015). https://doi.org/10.1103/physrevlett.115.098301, Google ScholarCrossref
  28. 28. S. C. Takatori and J. F. Brady, Phys. Rev. E 91, 032117 (2015). https://doi.org/10.1103/physreve.91.032117, Google ScholarCrossref
  29. 29. W. Yan and J. F. Brady, Soft Matter 11, 6235 (2015). https://doi.org/10.1039/c5sm01318f, Google ScholarCrossref
  30. 30. H. C. Berg, E. coli in Motion (Springer, 2004). Google ScholarCrossref
  31. 31. A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek, Phys. Rev. E 54, 1791 (1996). https://doi.org/10.1103/physreve.54.1791, Google ScholarCrossref
  32. 32. I. S. Aranson, C. R. Phys. 14, 518 (2013). https://doi.org/10.1016/j.crhy.2013.05.002, Google ScholarCrossref
  33. 33. J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010). https://doi.org/10.1103/physrevlett.105.088304, Google ScholarCrossref
  34. 34. W. Gao, A. Uygun, and J. Wang, J. Am. Chem. Soc. 134, 897 (2012). https://doi.org/10.1021/ja210874s, Google ScholarCrossref
  35. 35. A. A. Solovev, Y. Mei, E. B. Ureña, G. Huang, and O. G. Schmidt, Small 5, 1688 (2009). https://doi.org/10.1002/smll.200900021, Google ScholarCrossref
  36. 36. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/physrevlett.110.238301, Google ScholarCrossref
  37. 37. G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger, Soft Matter 7, 8810 (2011). https://doi.org/10.1039/c1sm05960b, Google ScholarCrossref
  38. 38. R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012). https://doi.org/10.1103/physrevlett.108.038303, Google ScholarCrossref
  39. 39. M. M. Hanczyc, T. Toyota, T. Ikegami, N. Packard, and T. Sugawara, J. Am. Chem. Soc. 129, 9386 (2007). https://doi.org/10.1021/ja0706955, Google ScholarCrossref
  40. 40. S. Thutupalli, R. Seemann, and S. Herminghaus, New J. Phys. 13, 073021 (2011). https://doi.org/10.1088/1367-2630/13/7/073021, Google ScholarCrossref
  41. 41. R. Dong, Q. Zhang, W. Gao, A. Pei, and B. Ren, ACS Nano 10, 839 (2016). https://doi.org/10.1021/acsnano.5b05940, Google ScholarCrossref
  42. 42. J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D. Marenduzzo, A. N. Morozov, and W. C. K. Poon, Proc. Natl. Acad. Sci. U. S. A. 109, 4052 (2012). https://doi.org/10.1073/pnas.1116334109, Google ScholarCrossref
  43. 43. B. M. Mognetti, A. Saric, S. Angioletti-Uberti, A. Cacciuto, C. Valeriani, and D. Frenkel, Phys. Rev. Lett. 111, 245702 (2013). https://doi.org/10.1103/physrevlett.111.245702, Google ScholarCrossref
  44. 44. V. Prymidis, H. Sielcken, and L. Filion, Soft Matter 11, 4158 (2015). https://doi.org/10.1039/c5sm00127g, Google ScholarCrossref
  45. 45. V. Prymidis, S. Paliwal, M. Dijkstra, and L. Filion, J. Chem. Phys. 145, 124904 (2016). https://doi.org/10.1063/1.4963191, Google ScholarScitation, ISI
  46. 46. B. Smit, J. Chem. Phys. 96, 8639 (1992). https://doi.org/10.1063/1.462271, Google ScholarScitation, ISI
  47. 47. J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509 (2006). https://doi.org/10.1080/00268970600556774, Google ScholarCrossref
  48. 48. H. Watanabe, N. Ito, and C.-K. Hu, J. Chem. Phys. 136, 204102 (2012). https://doi.org/10.1063/1.4720089, Google ScholarScitation, ISI
  49. 49. M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000). https://doi.org/10.1063/1.1288684, Google ScholarScitation, ISI
  50. 50. D. Dunikov, S. Malyshenko, and V. Zhakhovskii, J. Chem. Phys. 115, 6623 (2001). https://doi.org/10.1063/1.1396674, Google ScholarScitation, ISI
  51. 51. R. G. Winkler, A. Wysocki, and G. Gompper, Soft Matter 11, 6680 (2015). https://doi.org/10.1039/c5sm01412c, Google ScholarCrossref
  52. 52. A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur, Nat. Phys. 11, 673 (2015). https://doi.org/10.1038/nphys3377, Google ScholarCrossref
  53. 53. M. Dijkstra, S. Paliwal, J. Rodenburg, and R. van Roij, e-print arXiv:1609.02773 (2016). Google Scholar
  54. 54. R. Evans, Adv. Phys. 28, 143 (1979). https://doi.org/10.1080/00018737900101365, Google ScholarCrossref
  55. 55. D. J. Higham and D. Higham, SIAM Rev. 43, 525 (2001). https://doi.org/10.1137/s0036144500378302, Google ScholarCrossref
  56. 56. U. Marini Bettolo Marconi, C. Maggi, and S. Melchionna, Soft Matter 12, 5727 (2016). https://doi.org/10.1039/c6sm00667a, Google ScholarCrossref
  57. 57. J. Rodenburg, M. Dijkstra, and R. van Roij, e-print arXiv:1609.08163 (2016). Google Scholar
  58. 58. T. Ikeshoji, B. Hafskjold, and H. Furuholt, Mol. Simul. 29, 101 (2003). https://doi.org/10.1080/102866202100002518a, Google ScholarCrossref
  59. 59. M. V. Berry, Phys. Educ. 6, 79 (1971). https://doi.org/10.1088/0031-9120/6/2/001, Google ScholarCrossref
  60. 60. A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. Andreotti, Am. J. Phys. 79, 999 (2011). https://doi.org/10.1119/1.3619866, Google ScholarCrossref, ISI
  61. 61. A. Fortini, M. Dijkstra, M. Schmidt, and P. Wessels, Phys. Rev. E 71, 051403 (2005). https://doi.org/10.1103/physreve.71.051403, Google ScholarCrossref
  62. 62. P. Virnau and M. Müller, J. Chem. Phys. 120, 10925 (2004). https://doi.org/10.1063/1.1739216, Google ScholarScitation, ISI
  63. 63. K. Binder, Phys. Rev. A 25, 1699 (1982). https://doi.org/10.1103/physreva.25.1699, Google ScholarCrossref
  64. 64. J. Potoff and A. Panagiotopoulos, J. Chem. Phys. 112, 6411 (2000). https://doi.org/10.1063/1.481204, Google ScholarScitation, ISI
  65. 65. M. Müller and L. MacDowell, J. Phys.: Condens. Matter 15, R609 (2003). https://doi.org/10.1088/0953-8984/15/19/201, Google ScholarCrossref
  66. 66. S. W. Sides, G. S. Grest, and M.-D. Lacasse, Phys. Rev. E 60, 6708 (1999). https://doi.org/10.1103/physreve.60.6708, Google ScholarCrossref
  67. 67. M.-D. Lacasse, G. S. Grest, and A. J. Levine, Phys. Rev. Lett. 80, 309 (1998). https://doi.org/10.1103/physrevlett.80.309, Google ScholarCrossref
  68. 68. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Jr, Phys. Rev. Lett. 15, 621 (1965). https://doi.org/10.1103/physrevlett.15.621, Google ScholarCrossref
  69. 69. D. Beysens and M. Robert, J. Chem. Phys. 87, 3056 (1987). https://doi.org/10.1063/1.453042, Google ScholarScitation, ISI
  70. 70. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach Science Publishers, 1991). Google Scholar
  71. 71. W. Shi and J. K. Johnson, Fluid Phase Equilib. 187-188, 171 (2001). https://doi.org/10.1016/s0378-3812(01)00534-9, Google ScholarCrossref
  72. 72. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Dover Publications, 2002). Google Scholar
  73. 73. A. E. Ismail, G. S. Grest, and M. J. Stevens, J. Chem. Phys. 125, 014702 (2006). https://doi.org/10.1063/1.2348985, Google ScholarScitation
  1. © 2017 Author(s). Published by AIP Publishing.