ABSTRACT
This work treats the impact of vibrational coherence on the quantum efficiency of a dissipative electronic wave packet in the vicinity of a conical intersection by monitoring the time-dependent wave packet projection onto the tuning and the coupling mode. The vibrational coherence of the wave packet is tuned by varying the strength of the dissipative vibrational coupling of the tuning and the coupling modes to their thermal baths. We observe that the most coherent wave packet yields a quantum efficiency of 93%, but with a large transfer time constant. The quantum yield is dramatically decreased to 50% for a strongly damped incoherent wave packet, but the associated transfer time of the strongly localized wave packet is short. In addition, we find for the strongly damped wave packet that the transfer occurs via tunneling of the wave packet between the potential energy surfaces before the seam of the conical intersection is reached and a direct passage takes over. Our results provide direct evidence that vibrational coherence of the electronic wave packet is a decisive factor which determines the dynamical behavior of a wave packet in the vicinity of the conical intersection.
ACKNOWLEDGMENTS
This work was supported by the Max Planck Society and the Excellence Cluster “The Hamburg Center for Ultrafast Imaging—Structure, Dynamics and Control of Matter at the Atomic Scale” of the Deutsche Forschungsgemeinschaft. D.-L. Qi thanks the Fund of ECNU for Overseas and Domestic Academic Visits for support. H.G.D. acknowledges financial support by the Joachim-Hertz-Stiftung Hamburg within a PIER fellowship. H.-G. Duan acknowledges help from Lipeng Chen for the wave packet projection calculations.
- 1. W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersection: Electronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). Google ScholarCrossref
- 2. W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersection: Theory, Computation and Experiment (World Scientific, Singapore, 2011). Google ScholarCrossref
- 3. P. Hamm and G. Stock, Phys. Rev. Lett. 109, 173201 (2012). https://doi.org/10.1103/physrevlett.109.173201, Google ScholarCrossref
- 4. W. Domcke and D. R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012). https://doi.org/10.1146/annurev-physchem-032210-103522, Google ScholarCrossref
- 5. M. Kowalewski, B. P. Fingerhut, K. E. Dorfman, K. Bennett, and S. Mukamel, “Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes; from the infrared to the x-ray regime,” Chem. Rev. (to be published). Google Scholar
- 6. D. P. Hoffman and R. A. Mathies, Acc. Chem. Res. 49, 616 (2016). https://doi.org/10.1021/acs.accounts.5b00508, Google ScholarCrossref
- 7. B. K. Agarwalla, H. Ando, K. E. Dorfman, and S. Mukamel, J. Chem. Phys. 142, 024115 (2015). https://doi.org/10.1063/1.4905139, Google ScholarScitation
- 8. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschnedier, and R. A. Mathies, Science 310, 1006 (2005). https://doi.org/10.1126/science.1118379, Google ScholarCrossref
- 9. S. Takeuchi, S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara, Science 322, 1073 (2008). https://doi.org/10.1126/science.1160902, Google ScholarCrossref
- 10. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, Nature 462, 200 (2009). https://doi.org/10.1038/nature08527, Google ScholarCrossref
- 11. H. Ando, B. P. Fingerhut, K. E. Dorfman, J. D. Biggs, and S. Mukamel, J. Am. Chem. Soc. 136, 14801 (2014). https://doi.org/10.1021/ja5063955, Google ScholarCrossref
- 12. D. P. Hoffman, S. R. Ellis, and R. A. Mathies, J. Phys. Chem. A 118, 4955 (2014). https://doi.org/10.1021/jp5041986, Google ScholarCrossref
- 13. D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, Nature 467, 440 (2010). https://doi.org/10.1038/nature09346, Google ScholarCrossref
- 14. C. Schnedermann, M. Liebel, and P. Kukura, J. Am. Chem. Soc. 137, 2886 (2015). https://doi.org/10.1021/ja508941k, Google ScholarCrossref
- 15. M. Liebel, C. Schnedermann, G. Bassolino, G. Taylor, A. Watts, and P. Kukura, Phys. Rev. Lett. 112, 238301 (2014). https://doi.org/10.1103/physrevlett.112.238301, Google ScholarCrossref
- 16. P. J. M. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst, and R. J. D. Miller, Nat. Chem. 7, 980 (2015). https://doi.org/10.1038/nchem.2398, Google ScholarCrossref
- 17. P. J. M. Johnson, M. H. Farag, A. Halpin, T. Morizumi, V. I. Prokhorenko, J. Knoester, T. L. C. Jansen, O. P. Ernst, and R. J. D. Miller, J. Phys. Chem. B 121, 4040 (2017). https://doi.org/10.1021/acs.jpcb.7b02329, Google ScholarCrossref
- 18. V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, Science 313, 1257 (2006). https://doi.org/10.1126/science.1130747, Google ScholarCrossref
- 19. M. Liebel and P. Kukura, Nat. Chem. 9, 45 (2017). https://doi.org/10.1038/nchem.2598, Google ScholarCrossref
- 20. W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997). https://doi.org/10.1002/9780470141595.ch1, Google ScholarCrossref
- 21. S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000). https://doi.org/10.1021/jp992939g, Google ScholarCrossref
- 22. A. Kühl and W. Domcke, J. Chem. Phys. 116, 263 (2002). https://doi.org/10.1063/1.1423326, Google ScholarScitation, ISI
- 23. L. Chen, M. F. Gelin, V. Y. Chernyak, W. Domcke, and Y. Zhao, Faraday Discuss. 194, 61 (2016). https://doi.org/10.1039/c6fd00088f, Google ScholarCrossref
- 24. H.-G. Duan and M. Thorwart, J. Phys. Chem. Lett. 7, 382 (2016). https://doi.org/10.1021/acs.jpclett.5b02793, Google ScholarCrossref
- 25. J. Krčmář, M. F. Gelin, D. Egorova, and W. Domcke, J. Phys. B 47, 124019 (2014). https://doi.org/10.1088/0953-4075/47/12/124019, Google ScholarCrossref
- 26. J. Krčmář, M. F. Gelin, and W. Domcke, J. Chem. Phys. 143, 074308 (2015). https://doi.org/10.1063/1.4928685, Google ScholarScitation, ISI
- 27. M. Sala and D. Egorova, Chem. Phys. 481, 206 (2016). https://doi.org/10.1016/j.chemphys.2016.08.034, Google ScholarCrossref
- 28. M. H. Farag, T. C. Jansen, and J. Knoester, J. Phys. Chem. Lett. 7, 3328 (2016). https://doi.org/10.1021/acs.jpclett.6b01463, Google ScholarCrossref
- 29. M. Kowalewski, K. Bennett, K. E. Dorman, and S. Mukamel, Phys. Rev. Lett. 115, 193003 (2015). https://doi.org/10.1103/physrevlett.115.193003, Google ScholarCrossref
- 30. D. Keefer, S. Thallmair, S. Matsika, and R. de Vivie-Riedle, J. Am. Chem. Soc. 139, 5061 (2017). https://doi.org/10.1021/jacs.6b12033, Google ScholarCrossref
- 31. C. Liekhus-Schmaltz, G. A. McCracken, A. Kaldun, J. P. Cryan, and P. H. Bucksbaum, J. Chem. Phys. 145, 144304 (2016). https://doi.org/10.1063/1.4964392, Google ScholarScitation
- 32. M. Richter, F. Bouakline, J. Gonzǎlez-Vázquez, L. Martínez-Fernández, I. Corral, S. Patchkovskii, F. Morales, M. Ivanov, F. Martín, and O. Smirnova, New J. Phys. 17, 113023 (2015). https://doi.org/10.1088/1367-2630/17/11/113023, Google ScholarCrossref
- 33. H.-G. Duan, R. J. D. Miller, and M. Thorwart, J. Phys. Chem. Lett. 7, 3491 (2016). https://doi.org/10.1021/acs.jpclett.6b01551, Google ScholarCrossref
- 34. U. Manthe and H. Köppel, J. Chem. Phys. 93, 1658 (1990). https://doi.org/10.1063/1.459094, Google ScholarScitation, ISI
- 35. C. Schnedermann, V. Muders, D. Ehrenberg, R. Schlesinger, P. Kukura, and J. Heberle, J. Am. Chem. Soc. 138, 4757 (2016). https://doi.org/10.1021/jacs.5b12251, Google ScholarCrossref
- 36. C. Meier and D. J. Tannor, J. Chem. Phys. 111, 3365 (1999). https://doi.org/10.1063/1.479669, Google ScholarScitation, ISI
- 37. U. Kleinekathöfer, J. Chem. Phys. 121, 2505 (2004). https://doi.org/10.1063/1.1770619, Google ScholarScitation, ISI
- 38.The wave-packet dynamics has been calculated upto 2.5 ps to quantify the transfer time in the weak damping case.
- 39. M. V. Berry, Proc. R. Soc. A 392, 45 (1984). https://doi.org/10.1098/rspa.1984.0023, Google ScholarCrossref
- 40. I. G. Ryabinkin and A. F. Izmaylov, Phys. Rev. Lett. 111, 220406 (2013). https://doi.org/10.1103/physrevlett.111.220406, Google ScholarCrossref
- 41. L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 139, 234103 (2013). https://doi.org/10.1063/1.4844095, Google ScholarScitation, ISI
- 42. A. Kelly, and R. Kapral, J. Chem. Phys. 133, 084502 (2010). https://doi.org/10.1063/1.3475773, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.