No Access Submitted: 09 June 2017 Accepted: 01 August 2017 Published Online: 15 August 2017
J. Chem. Phys. 147, 074101 (2017); https://doi.org/10.1063/1.4989462
more...View Affiliations
View Contributors
  • Da-Long Qi
  • Hong-Guang Duan
  • Zhen-Rong Sun
  • R. J. Dwayne Miller
  • Michael Thorwart
This work treats the impact of vibrational coherence on the quantum efficiency of a dissipative electronic wave packet in the vicinity of a conical intersection by monitoring the time-dependent wave packet projection onto the tuning and the coupling mode. The vibrational coherence of the wave packet is tuned by varying the strength of the dissipative vibrational coupling of the tuning and the coupling modes to their thermal baths. We observe that the most coherent wave packet yields a quantum efficiency of 93%, but with a large transfer time constant. The quantum yield is dramatically decreased to 50% for a strongly damped incoherent wave packet, but the associated transfer time of the strongly localized wave packet is short. In addition, we find for the strongly damped wave packet that the transfer occurs via tunneling of the wave packet between the potential energy surfaces before the seam of the conical intersection is reached and a direct passage takes over. Our results provide direct evidence that vibrational coherence of the electronic wave packet is a decisive factor which determines the dynamical behavior of a wave packet in the vicinity of the conical intersection.
This work was supported by the Max Planck Society and the Excellence Cluster “The Hamburg Center for Ultrafast Imaging—Structure, Dynamics and Control of Matter at the Atomic Scale” of the Deutsche Forschungsgemeinschaft. D.-L. Qi thanks the Fund of ECNU for Overseas and Domestic Academic Visits for support. H.G.D. acknowledges financial support by the Joachim-Hertz-Stiftung Hamburg within a PIER fellowship. H.-G. Duan acknowledges help from Lipeng Chen for the wave packet projection calculations.
  1. 1. W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersection: Electronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). Google ScholarCrossref
  2. 2. W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersection: Theory, Computation and Experiment (World Scientific, Singapore, 2011). Google ScholarCrossref
  3. 3. P. Hamm and G. Stock, Phys. Rev. Lett. 109, 173201 (2012). https://doi.org/10.1103/physrevlett.109.173201, Google ScholarCrossref
  4. 4. W. Domcke and D. R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012). https://doi.org/10.1146/annurev-physchem-032210-103522, Google ScholarCrossref
  5. 5. M. Kowalewski, B. P. Fingerhut, K. E. Dorfman, K. Bennett, and S. Mukamel, “Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes; from the infrared to the x-ray regime,” Chem. Rev. (to be published). Google Scholar
  6. 6. D. P. Hoffman and R. A. Mathies, Acc. Chem. Res. 49, 616 (2016). https://doi.org/10.1021/acs.accounts.5b00508, Google ScholarCrossref
  7. 7. B. K. Agarwalla, H. Ando, K. E. Dorfman, and S. Mukamel, J. Chem. Phys. 142, 024115 (2015). https://doi.org/10.1063/1.4905139, Google ScholarScitation
  8. 8. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschnedier, and R. A. Mathies, Science 310, 1006 (2005). https://doi.org/10.1126/science.1118379, Google ScholarCrossref
  9. 9. S. Takeuchi, S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara, Science 322, 1073 (2008). https://doi.org/10.1126/science.1160902, Google ScholarCrossref
  10. 10. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, Nature 462, 200 (2009). https://doi.org/10.1038/nature08527, Google ScholarCrossref
  11. 11. H. Ando, B. P. Fingerhut, K. E. Dorfman, J. D. Biggs, and S. Mukamel, J. Am. Chem. Soc. 136, 14801 (2014). https://doi.org/10.1021/ja5063955, Google ScholarCrossref
  12. 12. D. P. Hoffman, S. R. Ellis, and R. A. Mathies, J. Phys. Chem. A 118, 4955 (2014). https://doi.org/10.1021/jp5041986, Google ScholarCrossref
  13. 13. D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, Nature 467, 440 (2010). https://doi.org/10.1038/nature09346, Google ScholarCrossref
  14. 14. C. Schnedermann, M. Liebel, and P. Kukura, J. Am. Chem. Soc. 137, 2886 (2015). https://doi.org/10.1021/ja508941k, Google ScholarCrossref
  15. 15. M. Liebel, C. Schnedermann, G. Bassolino, G. Taylor, A. Watts, and P. Kukura, Phys. Rev. Lett. 112, 238301 (2014). https://doi.org/10.1103/physrevlett.112.238301, Google ScholarCrossref
  16. 16. P. J. M. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst, and R. J. D. Miller, Nat. Chem. 7, 980 (2015). https://doi.org/10.1038/nchem.2398, Google ScholarCrossref
  17. 17. P. J. M. Johnson, M. H. Farag, A. Halpin, T. Morizumi, V. I. Prokhorenko, J. Knoester, T. L. C. Jansen, O. P. Ernst, and R. J. D. Miller, J. Phys. Chem. B 121, 4040 (2017). https://doi.org/10.1021/acs.jpcb.7b02329, Google ScholarCrossref
  18. 18. V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, Science 313, 1257 (2006). https://doi.org/10.1126/science.1130747, Google ScholarCrossref
  19. 19. M. Liebel and P. Kukura, Nat. Chem. 9, 45 (2017). https://doi.org/10.1038/nchem.2598, Google ScholarCrossref
  20. 20. W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997). https://doi.org/10.1002/9780470141595.ch1, Google ScholarCrossref
  21. 21. S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000). https://doi.org/10.1021/jp992939g, Google ScholarCrossref
  22. 22. A. Kühl and W. Domcke, J. Chem. Phys. 116, 263 (2002). https://doi.org/10.1063/1.1423326, Google ScholarScitation, ISI
  23. 23. L. Chen, M. F. Gelin, V. Y. Chernyak, W. Domcke, and Y. Zhao, Faraday Discuss. 194, 61 (2016). https://doi.org/10.1039/c6fd00088f, Google ScholarCrossref
  24. 24. H.-G. Duan and M. Thorwart, J. Phys. Chem. Lett. 7, 382 (2016). https://doi.org/10.1021/acs.jpclett.5b02793, Google ScholarCrossref
  25. 25. J. Krčmář, M. F. Gelin, D. Egorova, and W. Domcke, J. Phys. B 47, 124019 (2014). https://doi.org/10.1088/0953-4075/47/12/124019, Google ScholarCrossref
  26. 26. J. Krčmář, M. F. Gelin, and W. Domcke, J. Chem. Phys. 143, 074308 (2015). https://doi.org/10.1063/1.4928685, Google ScholarScitation, ISI
  27. 27. M. Sala and D. Egorova, Chem. Phys. 481, 206 (2016). https://doi.org/10.1016/j.chemphys.2016.08.034, Google ScholarCrossref
  28. 28. M. H. Farag, T. C. Jansen, and J. Knoester, J. Phys. Chem. Lett. 7, 3328 (2016). https://doi.org/10.1021/acs.jpclett.6b01463, Google ScholarCrossref
  29. 29. M. Kowalewski, K. Bennett, K. E. Dorman, and S. Mukamel, Phys. Rev. Lett. 115, 193003 (2015). https://doi.org/10.1103/physrevlett.115.193003, Google ScholarCrossref
  30. 30. D. Keefer, S. Thallmair, S. Matsika, and R. de Vivie-Riedle, J. Am. Chem. Soc. 139, 5061 (2017). https://doi.org/10.1021/jacs.6b12033, Google ScholarCrossref
  31. 31. C. Liekhus-Schmaltz, G. A. McCracken, A. Kaldun, J. P. Cryan, and P. H. Bucksbaum, J. Chem. Phys. 145, 144304 (2016). https://doi.org/10.1063/1.4964392, Google ScholarScitation
  32. 32. M. Richter, F. Bouakline, J. Gonzǎlez-Vázquez, L. Martínez-Fernández, I. Corral, S. Patchkovskii, F. Morales, M. Ivanov, F. Martín, and O. Smirnova, New J. Phys. 17, 113023 (2015). https://doi.org/10.1088/1367-2630/17/11/113023, Google ScholarCrossref
  33. 33. H.-G. Duan, R. J. D. Miller, and M. Thorwart, J. Phys. Chem. Lett. 7, 3491 (2016). https://doi.org/10.1021/acs.jpclett.6b01551, Google ScholarCrossref
  34. 34. U. Manthe and H. Köppel, J. Chem. Phys. 93, 1658 (1990). https://doi.org/10.1063/1.459094, Google ScholarScitation, ISI
  35. 35. C. Schnedermann, V. Muders, D. Ehrenberg, R. Schlesinger, P. Kukura, and J. Heberle, J. Am. Chem. Soc. 138, 4757 (2016). https://doi.org/10.1021/jacs.5b12251, Google ScholarCrossref
  36. 36. C. Meier and D. J. Tannor, J. Chem. Phys. 111, 3365 (1999). https://doi.org/10.1063/1.479669, Google ScholarScitation, ISI
  37. 37. U. Kleinekathöfer, J. Chem. Phys. 121, 2505 (2004). https://doi.org/10.1063/1.1770619, Google ScholarScitation, ISI
  38. 38.The wave-packet dynamics has been calculated upto 2.5 ps to quantify the transfer time in the weak damping case.
  39. 39. M. V. Berry, Proc. R. Soc. A 392, 45 (1984). https://doi.org/10.1098/rspa.1984.0023, Google ScholarCrossref
  40. 40. I. G. Ryabinkin and A. F. Izmaylov, Phys. Rev. Lett. 111, 220406 (2013). https://doi.org/10.1103/physrevlett.111.220406, Google ScholarCrossref
  41. 41. L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 139, 234103 (2013). https://doi.org/10.1063/1.4844095, Google ScholarScitation, ISI
  42. 42. A. Kelly, and R. Kapral, J. Chem. Phys. 133, 084502 (2010). https://doi.org/10.1063/1.3475773, Google ScholarScitation, ISI
  1. © 2017 Author(s). Published by AIP Publishing.