No Access Submitted: 26 September 2016 Accepted: 12 May 2017 Published Online: 23 May 2017
Appl. Phys. Lett. 110, 213903 (2017);
more...View AffiliationsView Contributors
  • Arijita Mukherjee
  • Hasti Asayesh Ardakani
  • Tanghong Yi
  • Jordi Cabana
  • Reza Shahbazian-Yassar
  • Robert F. Klie
The Li-V2O5 system has been well studied electrochemically, but there is a lack of systematic in-situ studies involving direct investigations of the structural changes that accompany the lithiation process. The open-cell battery setup inside a transmission electron microscope is ideal for studying the reaction pathway of intercalation of Li+ into nanowire cathodes. In this work, we utilize in-situ transmission electron microscopy to study the Li-V2O5 system. More specifically, we employ electron beam diffraction and electron energy-loss spectroscopy (EELS) in an open-cell battery setup to examine the phase changes within α-V2O5 nanowire cathodes upon in-situ lithiation. Our results suggest that the pristine α-V2O5 nanowire forms a Li oxide shell which then acts as a solid state electrolyte to conduct Li+ ions, and the bulk of the V2O5 nanowire undergoes transformation to the γLi2V2O5 phase.
This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. R. Shahbazian-Yassar and H. Asayesh-Ardakani acknowledge the funding support from the National Science Foundation (NSF-DMR-1620901) for their efforts on in-situ TEM. The acquisition of UIC JEOL JEM ARM200CF was supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470). The use of instrumentation at the UIC Research Resources Center (RRC-East) is acknowledged. Dr. Alan Nicholls from UIC Electron Microscopy Service (EMS), RRC East, is also acknowledged for his help and support.
  1. 1. J. M. Tarascon and M. Armand, Nature 414(6861), 359 (2001);, Google ScholarCrossref
    J. B. Goodenough and Y. Kim, Chem. Mater. 22(3), 587 (2010)., , Google ScholarCrossref
  2. 2. M. S. Whittingham, Chem. Rev. 104(10), 4271 (2004)., Google ScholarCrossref
  3. 3. M. S. Whittingham, J. Electrochem. Soc. 123(3), 315 (1976)., Google ScholarCrossref
  4. 4. M. S. Whittingham and M. B. Dines, J. Electrochem. Soc. 124(9), 1387 (1977)., Google ScholarCrossref
  5. 5. D. W. Murphy, P. A. Christian, F. J. DiSalvo, and J. V. Waszczak, Inorg. Chem. 18(10), 2800 (1979)., Google ScholarCrossref
  6. 6. N. A. Chernova, M. Roppolo, A. C. Dillon, and M. Stanley Whittingham, J. Mater. Chem. 19(17), 2526 (2009)., Google ScholarCrossref
  7. 7. D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson, J. Phys. Chem. C 112(26), 9903 (2008)., Google ScholarCrossref
  8. 8. K. West, B. Zachau-Christiansen, T. Jacobsen, and S. Skaarup, Solid State Ionics 76(1), 15 (1995)., Google ScholarCrossref
  9. 9. C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, M. Ménétrier, and J. P. Doumerc, Solid State Ionics 69(3), 257 (1994)., Google ScholarCrossref
  10. 10. S.-H. Ng, T. J. Patey, R. Buchel, F. Krumeich, J.-Z. Wang, H.-K. Liu, S. E. Pratsinis, and P. Novak, Phys. Chem. Chem. Phys. 11(19), 3748 (2009)., Google ScholarCrossref
  11. 11. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. V. Schalkwijk, Nat. Mater. 4(5), 366 (2005)., Google ScholarCrossref
  12. 12. L. Huang, Q. Wei, R. Sun, and L. Mai, Front. Energy Res. 2, 1 (2014)., Google ScholarCrossref
  13. 13. J. W. Lee, S. Y. Lim, H. M. Jeong, T. H. Hwang, J. K. Kang, and J. W. Choi, Energy Environ. Sci. 5(12), 9889 (2012)., Google ScholarCrossref
  14. 14. C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett. 7(2), 490 (2007)., Google ScholarCrossref
  15. 15. E. Strelcov, J. Cothren, D. Leonard, A. Y. Borisevich, and A. Kolmakov, Nanoscale 7(7), 3022 (2015)., Google ScholarCrossref
  16. 16. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, Science 330(6010), 1515 (2010)., Google ScholarCrossref
  17. 17. C. M. Wang, W. Xu, J. Liu, D. W. Choi, B. Arey, L. V. Saraf, J. G. Zhang, Z. G. Yang, S. Thevuthasan, D. R. Baer, and N. Salmon, J. Mater. Res. 25(08), 1541 (2010)., Google ScholarCrossref
  18. 18. L. Q. Zhang, X. H. Liu, Y.-C. Perng, J. Cho, J. P. Chang, S. X. Mao, Z. Z. Ye, and J. Y. Huang, Micron 43(11), 1127 (2012)., Google ScholarCrossref
  19. 19. A. Nie, L.-Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li, C. Dong, R. Tao, F. Mashayek, H.-T. Wang, U. Schwingenschlögl, R. F. Klie, and R. S. Yassar, ACS Nano 7(7), 6203 (2013)., Google ScholarCrossref
  20. 20. X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang, and T. Zhu, ACS Nano 7(2), 1495 (2013)., Google ScholarCrossref
  21. 21. X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. Tom Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, Nat. Nanotechnol. 7(11), 749 (2012)., Google ScholarCrossref
  22. 22. X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. Tom Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Nano Lett. 11(8), 3312 (2011)., Google ScholarCrossref
  23. 23. Y. Yuan, A. Nie, G. M. Odegard, R. Xu, D. Zhou, S. Santhanagopalan, K. He, H. Asayesh-Ardakani, D. D. Meng, R. F. Klie, C. Johnson, J. Lu, and R. Shahbazian-Yassar, Nano Lett. 15(5), 2998 (2015)., Google ScholarCrossref
  24. 24. D. R. Mitchell, Microsc. Res. Tech. 71(8), 588 (2008)., Google ScholarCrossref
  25. 25. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 22(23), 2547 (2010)., Google ScholarCrossref
  26. 26. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano 6(2), 1522 (2012)., Google ScholarCrossref
  27. 27. X. H. Liu and J. Y. Huang, Energy Environ. Sci. 4(10), 3844 (2011)., Google ScholarCrossref
  28. 28. Z. L. Wang, J. S. Yin, and Y. D. Jiang, Micron 31(5), 571 (2000)., Google ScholarCrossref
  29. 29. L. Laffont, M. Y. Wu, F. Chevallier, P. Poizot, M. Morcrette, and J. M. Tarascon, Micron 37(5), 459 (2006)., Google ScholarCrossref
  30. 30. D. Baither, T. Gallasch, and G. Schmitz, MC, Materials Science (Verlag Der TU Graz, 2009), Vol. 3. Google Scholar
  31. 31. T. Gallasch, T. Stockhoff, D. Baither, and G. Schmitz, J. Power Sources 196(1), 428 (2011)., Google ScholarCrossref
  32. 32. J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B 30(10), 5596 (1984)., Google ScholarCrossref
  33. 33. H. Asayesh-Ardakani, A. Nie, P. M. Marley, Y. Zhu, P. J. Phillips, S. Singh, F. Mashayek, G. Sambandamurthy, K.-B. Low, R. F. Klie, S. Banerjee, G. M. Odegard, and R. Shahbazian-Yassar, Nano Lett. 15(11), 7179 (2015)., Google ScholarCrossref, ISI
  34. 34. A. Mukherjee, N. Sa, P. J. Phillips, A. Burrell, J. Vaughey, and R. F. Klie, Chem. Mater. 29(5), 2218 (2017)., Google ScholarCrossref
  35. 35. C. Leger, S. Bach, P. Soudan, and J.-P. Pereira-Ramos, J. Electrochem. Soc. 152(1), A236 (2005)., Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.