ABSTRACT
The Li-V2O5 system has been well studied electrochemically, but there is a lack of systematic in-situ studies involving direct investigations of the structural changes that accompany the lithiation process. The open-cell battery setup inside a transmission electron microscope is ideal for studying the reaction pathway of intercalation of Li+ into nanowire cathodes. In this work, we utilize in-situ transmission electron microscopy to study the Li-V2O5 system. More specifically, we employ electron beam diffraction and electron energy-loss spectroscopy (EELS) in an open-cell battery setup to examine the phase changes within α-V2O5 nanowire cathodes upon in-situ lithiation. Our results suggest that the pristine α-V2O5 nanowire forms a Li oxide shell which then acts as a solid state electrolyte to conduct Li+ ions, and the bulk of the V2O5 nanowire undergoes transformation to the phase.
This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. R. Shahbazian-Yassar and H. Asayesh-Ardakani acknowledge the funding support from the National Science Foundation (NSF-DMR-1620901) for their efforts on in-situ TEM. The acquisition of UIC JEOL JEM ARM200CF was supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470). The use of instrumentation at the UIC Research Resources Center (RRC-East) is acknowledged. Dr. Alan Nicholls from UIC Electron Microscopy Service (EMS), RRC East, is also acknowledged for his help and support.
REFERENCES
- 1.
J. M. Tarascon and
M. Armand, Nature 414(6861), 359 (2001); https://doi.org/10.1038/35104644, Google ScholarCrossref
J. B. Goodenough and Y. Kim, Chem. Mater. 22(3), 587 (2010). https://doi.org/10.1021/cm901452z, , Google ScholarCrossref - 2. M. S. Whittingham, Chem. Rev. 104(10), 4271 (2004). https://doi.org/10.1021/cr020731c, Google ScholarCrossref
- 3. M. S. Whittingham, J. Electrochem. Soc. 123(3), 315 (1976). https://doi.org/10.1149/1.2132817, Google ScholarCrossref
- 4. M. S. Whittingham and M. B. Dines, J. Electrochem. Soc. 124(9), 1387 (1977). https://doi.org/10.1149/1.2133659, Google ScholarCrossref
- 5. D. W. Murphy, P. A. Christian, F. J. DiSalvo, and J. V. Waszczak, Inorg. Chem. 18(10), 2800 (1979). https://doi.org/10.1021/ic50200a034, Google ScholarCrossref
- 6. N. A. Chernova, M. Roppolo, A. C. Dillon, and M. Stanley Whittingham, J. Mater. Chem. 19(17), 2526 (2009). https://doi.org/10.1039/b819629j, Google ScholarCrossref
- 7. D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson, J. Phys. Chem. C 112(26), 9903 (2008). https://doi.org/10.1021/jp711334f, Google ScholarCrossref
- 8. K. West, B. Zachau-Christiansen, T. Jacobsen, and S. Skaarup, Solid State Ionics 76(1), 15 (1995). https://doi.org/10.1016/0167-2738(95)94037-M, Google ScholarCrossref
- 9. C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, M. Ménétrier, and J. P. Doumerc, Solid State Ionics 69(3), 257 (1994). https://doi.org/10.1016/0167-2738(94)90414-6, Google ScholarCrossref
- 10. S.-H. Ng, T. J. Patey, R. Buchel, F. Krumeich, J.-Z. Wang, H.-K. Liu, S. E. Pratsinis, and P. Novak, Phys. Chem. Chem. Phys. 11(19), 3748 (2009). https://doi.org/10.1039/b821389p, Google ScholarCrossref
- 11. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. V. Schalkwijk, Nat. Mater. 4(5), 366 (2005). https://doi.org/10.1038/nmat1368, Google ScholarCrossref
- 12. L. Huang, Q. Wei, R. Sun, and L. Mai, Front. Energy Res. 2, 1 (2014). https://doi.org/10.3389/fenrg.2014.00043, Google ScholarCrossref
- 13. J. W. Lee, S. Y. Lim, H. M. Jeong, T. H. Hwang, J. K. Kang, and J. W. Choi, Energy Environ. Sci. 5(12), 9889 (2012). https://doi.org/10.1039/c2ee22004k, Google ScholarCrossref
- 14. C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett. 7(2), 490 (2007). https://doi.org/10.1021/nl062883j, Google ScholarCrossref
- 15. E. Strelcov, J. Cothren, D. Leonard, A. Y. Borisevich, and A. Kolmakov, Nanoscale 7(7), 3022 (2015). https://doi.org/10.1039/C4NR06767C, Google ScholarCrossref
- 16. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, Science 330(6010), 1515 (2010). https://doi.org/10.1126/science.1195628, Google ScholarCrossref
- 17. C. M. Wang, W. Xu, J. Liu, D. W. Choi, B. Arey, L. V. Saraf, J. G. Zhang, Z. G. Yang, S. Thevuthasan, D. R. Baer, and N. Salmon, J. Mater. Res. 25(08), 1541 (2010). https://doi.org/10.1557/JMR.2010.0198, Google ScholarCrossref
- 18. L. Q. Zhang, X. H. Liu, Y.-C. Perng, J. Cho, J. P. Chang, S. X. Mao, Z. Z. Ye, and J. Y. Huang, Micron 43(11), 1127 (2012). https://doi.org/10.1016/j.micron.2012.01.016, Google ScholarCrossref
- 19. A. Nie, L.-Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li, C. Dong, R. Tao, F. Mashayek, H.-T. Wang, U. Schwingenschlögl, R. F. Klie, and R. S. Yassar, ACS Nano 7(7), 6203 (2013). https://doi.org/10.1021/nn402125e, Google ScholarCrossref
- 20. X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang, and T. Zhu, ACS Nano 7(2), 1495 (2013). https://doi.org/10.1021/nn305282d, Google ScholarCrossref
- 21. X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. Tom Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, Nat. Nanotechnol. 7(11), 749 (2012). https://doi.org/10.1038/nnano.2012.170, Google ScholarCrossref
- 22. X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. Tom Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Nano Lett. 11(8), 3312 (2011). https://doi.org/10.1021/nl201684d, Google ScholarCrossref
- 23. Y. Yuan, A. Nie, G. M. Odegard, R. Xu, D. Zhou, S. Santhanagopalan, K. He, H. Asayesh-Ardakani, D. D. Meng, R. F. Klie, C. Johnson, J. Lu, and R. Shahbazian-Yassar, Nano Lett. 15(5), 2998 (2015). https://doi.org/10.1021/nl5048913, Google ScholarCrossref
- 24. D. R. Mitchell, Microsc. Res. Tech. 71(8), 588 (2008). https://doi.org/10.1002/jemt.20591, Google ScholarCrossref
- 25. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 22(23), 2547 (2010). https://doi.org/10.1002/adma.200903586, Google ScholarCrossref
- 26. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano 6(2), 1522 (2012). https://doi.org/10.1021/nn204476h, Google ScholarCrossref
- 27. X. H. Liu and J. Y. Huang, Energy Environ. Sci. 4(10), 3844 (2011). https://doi.org/10.1039/c1ee01918j, Google ScholarCrossref
- 28. Z. L. Wang, J. S. Yin, and Y. D. Jiang, Micron 31(5), 571 (2000). https://doi.org/10.1016/S0968-4328(99)00139-0, Google ScholarCrossref
- 29. L. Laffont, M. Y. Wu, F. Chevallier, P. Poizot, M. Morcrette, and J. M. Tarascon, Micron 37(5), 459 (2006). https://doi.org/10.1016/j.micron.2005.11.007, Google ScholarCrossref
- 30. D. Baither, T. Gallasch, and G. Schmitz, MC, Materials Science (Verlag Der TU Graz, 2009), Vol. 3. Google Scholar
- 31. T. Gallasch, T. Stockhoff, D. Baither, and G. Schmitz, J. Power Sources 196(1), 428 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.099, Google ScholarCrossref
- 32. J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B 30(10), 5596 (1984). https://doi.org/10.1103/PhysRevB.30.5596, Google ScholarCrossref
- 33. H. Asayesh-Ardakani, A. Nie, P. M. Marley, Y. Zhu, P. J. Phillips, S. Singh, F. Mashayek, G. Sambandamurthy, K.-B. Low, R. F. Klie, S. Banerjee, G. M. Odegard, and R. Shahbazian-Yassar, Nano Lett. 15(11), 7179 (2015). https://doi.org/10.1021/acs.nanolett.5b03219, Google ScholarCrossref, ISI
- 34. A. Mukherjee, N. Sa, P. J. Phillips, A. Burrell, J. Vaughey, and R. F. Klie, Chem. Mater. 29(5), 2218 (2017). https://doi.org/10.1021/acs.chemmater.6b05089, Google ScholarCrossref
- 35. C. Leger, S. Bach, P. Soudan, and J.-P. Pereira-Ramos, J. Electrochem. Soc. 152(1), A236 (2005). https://doi.org/10.1149/1.1836155, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.