No Access Submitted: 06 January 2017 Accepted: 09 March 2017 Published Online: 24 March 2017
Journal of Applied Physics 121, 125106 (2017); https://doi.org/10.1063/1.4979020
more...View Affiliations
View Contributors
  • Ahmed Allam
  • Adel Elsabbagh
  • Wael Akl
A class of active acoustic metamaterials (AMMs) with a fully controllable effective density in real-time is introduced, modeled, and experimentally verified. The density of the developed AMM can be programmed to any value ranging from −100 kg/m3 to 100 kg/m3 passing by near zero density conditions. This is achievable for any frequency between 500 and 1500 Hz. The material consists of clamped piezoelectric diaphragms with air as the background fluid. The dynamics of the diaphragms are controlled by connecting a closed feedback control loop between the piezoelectric layers of the diaphragm. The density of the material is adjustable through an outer adaptive feedback loop that is implemented by the real-time evaluation of the density using the 4-microphone technique. Applications for the new material include programmable active acoustic filters, nonsymmetric acoustic transmission, and programmable acoustic superlens.
  1. 1. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nat. Mater. 8, 931 (2009). https://doi.org/10.1038/nmat2561, Google ScholarCrossref
  2. 2. J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, Appl. Phys. Lett. 106, 051901 (2015). https://doi.org/10.1063/1.4907634, Google ScholarScitation, ISI
  3. 3. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Nature 525, 77 (2015). https://doi.org/10.1038/nature14678, Google ScholarCrossref, ISI
  4. 4. S. A. Cummer and D. Schurig, New J. Phys. 9, 45 (2007). https://doi.org/10.1088/1367-2630/9/3/045, Google ScholarCrossref, ISI
  5. 5. S. Cummer, B.-I. Popa, D. Schurig, D. Smith, J. Pendry, M. Rahm, and A. Starr, Phys. Rev. Lett. 100, 024301 (2008). https://doi.org/10.1103/PhysRevLett.100.024301, Google ScholarCrossref, ISI
  6. 6. D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 063015 (2008). https://doi.org/10.1088/1367-2630/10/6/063015, Google ScholarCrossref, ISI
  7. 7. J. Zhao, Z. N. Chen, B. Li, and C.-W. Qiu, J. Appl. Phys. 117, 214507 (2015). https://doi.org/10.1063/1.4922120, Google ScholarScitation
  8. 8. B. Liang, B. Yuan, and J.-C. Cheng, Phys. Rev. Lett. 103, 104301 (2009). https://doi.org/10.1103/PhysRevLett.103.104301, Google ScholarCrossref, ISI
  9. 9. B.-I. Popa and S. A. Cummer, Nat. Commun. 5, 3398 (2014). https://doi.org/10.1038/ncomms4398, Google ScholarCrossref, ISI
  10. 10. J. Ma, M. B. Steer, and X. Jiang, Appl. Phys. Lett. 106, 111903 (2015). https://doi.org/10.1063/1.4915100, Google ScholarScitation
  11. 11. M. Fink, Nat. Mater. 13, 848 (2014). https://doi.org/10.1038/nmat4067, Google ScholarCrossref
  12. 12. J.-P. Groby, W. Huang, A. Lardeau, and Y. Aurégan, J. Appl. Phys. 117, 124903 (2015). https://doi.org/10.1063/1.4915115, Google ScholarScitation, ISI
  13. 13. R. Fleury and A. Alù, Phys. Rev. Lett. 111, 055501 (2013). https://doi.org/10.1103/PhysRevLett.111.055501, Google ScholarCrossref, ISI
  14. 14. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289, 1734 (2000). https://doi.org/10.1126/science.289.5485.1734, Google ScholarCrossref, ISI
  15. 15. Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, and J.-C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). https://doi.org/10.1063/1.4769984, Google ScholarScitation, ISI
  16. 16. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). https://doi.org/10.1103/PhysRevLett.108.114301, Google ScholarCrossref, ISI
  17. 17. S. K. Maurya, A. Pandey, S. Shukla, and S. Saxena, Sci. Rep. 6, 33683 (2016). https://doi.org/10.1038/srep33683, Google ScholarCrossref
  18. 18. D. Torrent and J. Sánchez-Dehesa, Phys. Rev. B 74, 224305 (2006). https://doi.org/10.1103/PhysRevB.74.224305, Google ScholarCrossref
  19. 19. D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 023004 (2008). https://doi.org/10.1088/1367-2630/10/2/023004, Google ScholarCrossref, ISI
  20. 20. D. Torrent and J. Sánchez-Dehesa, Phys. Rev. Lett. 105, 174301 (2010). https://doi.org/10.1103/PhysRevLett.105.174301, Google ScholarCrossref
  21. 21. S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Phys. Lett. A 373, 4464 (2009). https://doi.org/10.1016/j.physleta.2009.10.013, Google ScholarCrossref, ISI
  22. 22. F. Bongard, H. Lissek, and J. Mosig, Phys. Rev. B 82, 094306 (2010). https://doi.org/10.1103/PhysRevB.82.094306, Google ScholarCrossref, ISI
  23. 23. L. Fok and X. Zhang, Phys. Rev. B 83, 214304 (2011). https://doi.org/10.1103/PhysRevB.83.214304, Google ScholarCrossref
  24. 24. T.-Y. Huang, C. Shen, and Y. Jing, J. Acoust. Soc. Am. 139, 3240 (2016). https://doi.org/10.1121/1.4950751, Google ScholarCrossref, ISI
  25. 25. C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt, J. Appl. Phys. 108, 114905 (2010). https://doi.org/10.1063/1.3514082, Google ScholarScitation, ISI
  26. 26. C. J. Naify, C.-M. Chang, G. McKnight, F. Scheulen, and S. Nutt, J. Appl. Phys. 109, 104902 (2011). https://doi.org/10.1063/1.3583656, Google ScholarScitation, ISI
  27. 27. N. Sui, X. Yan, T.-Y. Huang, J. Xu, F.-G. Yuan, and Y. Jing, Appl. Phys. Lett. 106, 171905 (2015). https://doi.org/10.1063/1.4919235, Google ScholarScitation, ISI
  28. 28. L. Fan, Z. Chen, S.-Y. Zhang, J. Ding, X.-J. Li, and H. Zhang, Appl. Phys. Lett. 106, 151908 (2015). https://doi.org/10.1063/1.4918374, Google ScholarScitation, ISI
  29. 29. Y. Gu, Y. Cheng, J. Wang, and X. Liu, J. Appl. Phys. 118, 024505 (2015). https://doi.org/10.1063/1.4922669, Google ScholarScitation, ISI
  30. 30. F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and M. Ruzzene, J. Appl. Phys. 112, 064902 (2012). https://doi.org/10.1063/1.4752468, Google ScholarScitation, ISI
  31. 31. W. Akl and A. Baz, J. Intell. Mater. Syst. Struct. 21, 541 (2010). https://doi.org/10.1177/1045389X09359434, Google ScholarCrossref
  32. 32. A. Baz, New J. Phys. 11, 123010 (2009). https://doi.org/10.1088/1367-2630/11/12/123010, Google ScholarCrossref
  33. 33. W. Akl and A. Baz, J. Dyn. Syst., Meas., Control 134, 061001 (2012). https://doi.org/10.1115/1.4006619, Google ScholarCrossref
  34. 34. W. Akl and A. Baz, J. Appl. Phys. 112, 084912 (2012). https://doi.org/10.1063/1.4759327, Google ScholarScitation
  35. 35. X. Chen, X. Xu, S. Ai, H. Chen, Y. Pei, and X. Zhou, Appl. Phys. Lett. 105, 071913 (2014). https://doi.org/10.1063/1.4893921, Google ScholarScitation, ISI
  36. 36. Y. Jin, B. Bonello, and Y. Pan, J. Phys. D: Appl. Phys. 47, 245301 (2014). https://doi.org/10.1088/0022-3727/47/24/245301, Google ScholarCrossref
  37. 37. A. A. Kutsenko, A. L. Shuvalov, O. Poncelet, and A. N. Darinskii, J. Acoust. Soc. Am. 137, 606 (2015). https://doi.org/10.1121/1.4906162, Google ScholarCrossref, ISI
  38. 38. Z. Hou and B. M. Assouar, Appl. Phys. Lett. 106, 251901 (2015). https://doi.org/10.1063/1.4922873, Google ScholarScitation, ISI
  39. 39. S. Xiao, G. Ma, Y. Li, Z. Yang, and P. Sheng, Appl. Phys. Lett. 106, 091904 (2015). https://doi.org/10.1063/1.4913999, Google ScholarScitation, ISI
  40. 40. Z. Chen, C. Xue, L. Fan, S.-Y. Zhang, X.-J. Li, H. Zhang, and J. Ding, Sci. Rep. 6, 30254 (2016). https://doi.org/10.1038/srep30254, Google ScholarCrossref, ISI
  41. 41. A. Allam, A. Elsabbagh, and W. Akl, J. Acoust. Soc. Am. 140, 3607 (2016). https://doi.org/10.1121/1.4966627, Google ScholarCrossref, ISI
  42. 42. B.-I. Popa, L. Zigoneanu, and S. Cummer, Phys. Rev. B 88, 024303 (2013). https://doi.org/10.1103/PhysRevB.88.024303, Google ScholarCrossref
  43. 43. B.-I. Popa, D. Shinde, A. Konneker, and S. A. Cummer, Phys. Rev. B 91, 220303 (2015). https://doi.org/10.1103/PhysRevB.91.220303, Google ScholarCrossref, ISI
  44. 44. V. Fokin, M. Ambati, C. Sun, and X. Zhang, Phys. Rev. B 76, 144302 (2007). https://doi.org/10.1103/PhysRevB.76.144302, Google ScholarCrossref, ISI
  45. 45. C. R. Simovski, Opt. Spectrosc. 107, 726 (2009). https://doi.org/10.1134/S0030400X09110101, Google ScholarCrossref
  46. 46. A. Alù, Phys. Rev. B 83, 081102 (2011). https://doi.org/10.1103/PhysRevB.83.081102, Google ScholarCrossref
  47. 47. A. Srivastava, Int. J. Smart Nano Mater. 6, 41 (2015). https://doi.org/10.1080/19475411.2015.1017779, Google ScholarCrossref
  48. 48. X. Hu, K.-M. Ho, C. T. Chan, and J. Zi, Phys. Rev. B 77, 172301 (2008). https://doi.org/10.1103/PhysRevB.77.172301, Google ScholarCrossref
  49. 49. M. Yang, G. Ma, Y. Wu, Z. Yang, and P. Sheng, Phys. Rev. B 89, 064309 (2014). https://doi.org/10.1103/PhysRevB.89.064309, Google ScholarCrossref, ISI
  50. 50. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. ( CRC Press, Boca Raton, 2004), pp. 269, 356–357. Google ScholarCrossref
  51. 51. C. K. Lee, J. Acoust. Soc. Am. 87, 1144 (1990). https://doi.org/10.1121/1.398788, Google ScholarCrossref
  52. 52. ASTM E2611-09, Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (ASTM International, 2009). Google Scholar
  53. 53. P. Li, S. Yao, X. Zhou, G. Huang, and G. Hu, J. Acoust. Soc. Am. 135, 1844 (2014). https://doi.org/10.1121/1.4868400, Google ScholarCrossref, ISI
  54. 54. Z.-m. Gu, B. Liang, Y. Li, X.-y. Zou, L.-l. Yin, and J.-c. Cheng, J. Appl. Phys. 117, 074502 (2015). https://doi.org/10.1063/1.4913220, Google ScholarScitation, ISI
  55. 55. M. Abom, Mech. Syst. Signal Process. 5, 89 (1991). https://doi.org/10.1016/0888-3270(91)90017-Y, Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.