No Access Submitted: 07 December 2016 Accepted: 08 February 2017 Published Online: 28 February 2017
Physics of Plasmas 24, 022310 (2017);
more...View Affiliations
View Contributors
  • Magnus Dam
  • Morten Brøns
  • Jens Juul Rasmussen
  • Volker Naulin
  • Jan S. Hesthaven
The use of low-dimensional dynamical systems as reduced models for plasma dynamics is useful as solving an initial value problem requires much less computational resources than fluid simulations. We utilize a data-driven modeling approach to identify a reduced model from simulation data of a convection problem. A convection model with a pressure source centered at the inner boundary models the edge dynamics of a magnetically confined plasma. The convection problem undergoes a sequence of bifurcations as the strength of the pressure source increases. The time evolution of the energies of the pressure profile, the turbulent flow, and the zonal flow capture the fundamental dynamic behavior of the full system. By applying the sparse identification of nonlinear dynamics (SINDy) method, we identify a predator-prey type dynamical system that approximates the underlying dynamics of the three energy state variables. A bifurcation analysis of the system reveals consistency between the bifurcation structures, observed for the simulation data, and the identified underlying system.
M.D. thanks the people at the Mathematics Institute of Computational Science and Engineering, EPFL, for hospitality and useful discussions during a research stay where this paper was partly written.
  1. 1. Ö. D. Gürcan and P. H. Diamond, J. Phys. A: Math. Theor. 48, 293001 (2015)., Google ScholarCrossref, ISI
  2. 2. P. Morel, Ö. D. Gürcan, and V. Berionni, Plasma Phys. Controlled Fusion 56, 015002 (2014)., Google ScholarCrossref
  3. 3. F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007)., Google ScholarCrossref, ISI
  4. 4. H. Sugama and W. Horton, Plasma Phys. Controlled Fusion 37, 345 (1995)., Google ScholarCrossref
  5. 5. R. Ball, R. L. Dewar, and H. Sugama, Phys. Rev. E 66, 066408 (2002)., Google ScholarCrossref
  6. 6. E.-J. Kim and P. H. Diamond, Phys. Plasmas 10, 1698 (2003)., Google ScholarScitation, ISI
  7. 7. R. Ball, Phys. Plasmas 12, 090904 (2005)., Google ScholarScitation
  8. 8. M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)., Google ScholarScitation
  9. 9. H. Zhu, S. C. Chapman, and R. O. Dendy, Phys. Plasmas 20, 042302 (2013)., Google ScholarScitation, ISI
  10. 10. M. Dam, M. Brøns, J. Juul Rasmussen, V. Naulin, and G. S. Xu, Phys. Plasmas 20, 102302 (2013)., Google ScholarScitation, ISI
  11. 11. G. S. Xu, L. Shao, S. Liu, H. Wang, B. Wan, H. Guo, P. Diamond, G. Tynan, M. Xu, S. Zweben, V. Naulin, A. Nielsen, J. Juul Rasmussen, N. Fedorczak, P. Manz, K. Miki, N. Yan, R. Chen, B. Cao, L. Chen, L. Wang, W. Zhang, and X. Gong, Nucl. Fusion 54, 013007 (2014)., Google ScholarCrossref
  12. 12. H. Zhu, S. C. Chapman, R. O. Dendy, and K. Itoh, Phys. Plasmas 21, 062307 (2014)., Google ScholarScitation
  13. 13. K. Miki, P. H. Diamond, Ö. D. Gürcan, G. R. Tynan, T. Estrada, L. Schmitz, and G. S. Xu, Phys. Plasmas 19, 092306 (2012)., Google ScholarScitation, ISI
  14. 14. X. Wu, G. S. Xu, B. Wan, J. Juul Rasmussen, V. Naulin, and A. H. Nielsen, Nucl. Fusion 55, 053029 (2015)., Google ScholarCrossref
  15. 15. L. Ljung, System Identification: Theory for the User, 2nd ed., Prentice-Hall Information and System Sciences Series ( Prentice Hall, 1999). Google ScholarCrossref
  16. 16. S. Kobayashi, Ö. D. Gürcan, and P. H. Diamond, Phys. Plasmas 22, 090702 (2015)., Google ScholarScitation, ISI
  17. 17. S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl. Acad. Sci. U.S.A. 113, 3932 (2016)., Google ScholarCrossref
  18. 18. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, Phys. Rev. Lett. 106, 154101 (2011)., Google ScholarCrossref
  19. 19. N. Bian, S. Benkadda, O. E. Garcia, J.-V. Paulsen, and X. Garbet, Phys. Plasmas 10, 1382 (2003)., Google ScholarScitation, ISI
  20. 20. O. E. Garcia, N. H. Bian, J.-V. Paulsen, S. Benkadda, and K. Rypdal, Plasma Phys. Controlled Fusion 45, 919 (2003)., Google ScholarCrossref
  21. 21. N. H. Bian and O. E. Garcia, Phys. Plasmas 12, 042307 (2005)., Google ScholarScitation
  22. 22. O. E. Garcia, N. H. Bian, V. Naulin, A. H. Nielsen, and J. Juul Rasmussen, Phys. Plasmas 12, 090701 (2005)., Google ScholarScitation, ISI
  23. 23. O. E. Garcia, N. H. Bian, and W. Fundamenski, Phys. Plasmas 13, 082309 (2006)., Google ScholarScitation, ISI
  24. 24. A. Getling, Rayleigh-Bénard Convection - Structures and Dynamics, Advanced Series in Nonlinear Dynamics ( World Scientific Publishing, 1998), Vol. 11. Google ScholarCrossref
  25. 25. O. E. Garcia, V. Naulin, A. H. Nielsen, and J. Juul Rasmussen, Phys. Plasmas 12, 062309 (2005)., Google ScholarScitation, ISI
  26. 26. O. E. Garcia, J. Horacek, R. A. Pitts, A. H. Nielsen, W. Fundamenski, J. P. Graves, V. Naulin, and J. Juul Rasmussen, Plasma Phys. Controlled Fusion 48, L1 (2006)., Google ScholarCrossref
  27. 27. “COMSOL Multiphysics® v. 5.2a,” COMSOL AB, Stockholm, Sweden. Google Scholar
  28. 28. A. Nielsen, G. Xu, J. Madsen, V. Naulin, J. Juul Rasmussen, and B. Wan, Phys. Lett. A 379, 3097 (2015)., Google ScholarCrossref
  29. 29. J. Juul Rasmussen, A. H. Nielsen, J. Madsen, V. Naulin, and G. S. Xu, Plasma Phys. Controlled Fusion 58, 014031 (2016)., Google ScholarCrossref
  30. 30. N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 52 (2016)., Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.