No Access Submitted: 15 September 2016 Accepted: 12 December 2016 Published Online: 11 January 2017
Journal of Applied Physics 121, 025702 (2017); https://doi.org/10.1063/1.4972979
more...View Affiliations
View Contributors
  • Masataka Imura
  • Ryan G. Banal
  • Meiyong Liao
  • Jiangwei Liu
  • Takashi Aizawa
  • Akihiro Tanaka
  • Hideo Iwai
  • Takaaki Mano
  • Yasuo Koide
Single-crystal AlN/diamond heterojunction with high-density interface hole channel is successfully obtained by metal-organic vapor phase epitaxy. The AlN layer is epitaxially grown on hydrogen-terminated (H-)diamond(111) substrate. The thermal treatment of diamond substrate just before AlN growth under hydrogen and ammonia mixture environment at 1250 °C leads to surface sheet hole density as high as ∼1.0 × 1014 cm−2 without structural reconstruction of diamond surface. In addition, the use of smaller off-cut angle (0.20 ± 0.25°) H-diamond(111) substrate combined with this treatment enables to obtain single-crystal epitaxial AlN layer, which simultaneously acts as passivation of the surface hole channel with such a high density. The AlN/H-diamond(111) heterojunction reveals type-II staggered energy band configuration with valence band offset of ∼2.0 eV, which is suitable for the fabrication of p-channel field-effect transistor using AlN-gate-insulator/diamond heterojunction. These results are promising for the development of AlN/diamond hybrid power electronic devices.
This work was partly supported by JSPS Grant-in-Aid for Scientific Research C (No. 25420349) and Scientific Research A (No. 25249054) and Nanotechnology Platform Project (NIMS Nanofabrication Platform) sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
  1. 1. C. R. Miskys, J. A. Garrido, C. E. Nebel, M. Hermann, O. Ambacher, M. Eickhoff, and M. Stutzmann, Appl. Phys. Lett. 82, 290 (2003). https://doi.org/10.1063/1.1532545, Google ScholarScitation, ISI
  2. 2. C. E. Nebel, C. R. Miskys, J. A. Garrido, M. Hermann, O. Ambacher, M. Eickhoff, and M. Stutzmann, Diamond Relat. Mater. 12, 1873 (2003). https://doi.org/10.1016/S0925-9635(03)00313-3, Google ScholarCrossref
  3. 3. D. Kueck, P. Leber, A. Schmidt, G. Speranza, and E. Kohn, Diamond Relat. Mater. 19, 932 (2010). https://doi.org/10.1016/j.diamond.2010.02.026, Google ScholarCrossref
  4. 4. M. B. Assouar, O. Elmazria, P. Kirsch, P. Alnot, V. Mortet, and C. Tiusan, J. Appl. Phys. 101, 114507 (2007). https://doi.org/10.1063/1.2739218, Google ScholarScitation
  5. 5. Y. Taniyasu and M. Kasu, J. Cryst. Growth 311, 2825 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.021, Google ScholarCrossref
  6. 6. A. Dussaigne, M. Malinverni, D. Martin, A. Castiglia, and N. Grandjean, J. Cryst. Growth 311, 4539 (2009). https://doi.org/10.1016/j.jcrysgro.2009.08.018, Google ScholarCrossref
  7. 7. K. Hirama, Y. Taniyasu, and M. Kasu, Appl. Phys. Lett. 98, 011908 (2011). https://doi.org/10.1063/1.3533380, Google ScholarScitation, ISI
  8. 8. K. Hirama, M. Kasu, and Y. Taniyasu, Jpn. J. Appl. Phys., Part 1 51, 01AG09 (2012). https://doi.org/10.7567/JJAP.51.01AG09, Google ScholarCrossref
  9. 9. A. Dussaigne, M. Gonschorek, M. Malinverni, M. A. Py, D. Martin, A. Mouti, P. Stadelmann, and N. Grandjean, Jpn. J. Appl. Phys., Part 1 49, 061001 (2010). https://doi.org/10.1143/JJAP.49.061001, Google ScholarCrossref
  10. 10. M. Imura, R. Hayakawa, E. Watanabe, M. Liao, Y. Koide, and H. Amano, Phys. Status Solidi RRL 5, 125 (2011). https://doi.org/10.1002/pssr.201105024, Google ScholarCrossref, ISI
  11. 11. M. Imura, R. Hayakawa, H. Ohsato, E. Watanabe, D. Tsuya, T. Nagata, M. Liao, Y. Koide, J. Yamamoto, K. Ban, M. Iwaya, and H. Amano, Diamond Relat. Mater. 24, 206 (2012). https://doi.org/10.1016/j.diamond.2012.01.020, Google ScholarCrossref, ISI
  12. 12. M. Imura, K. Nakajima, M. Liao, Y. Koide, and H. Amano, J. Cryst. Growth 312, 1325 (2010). https://doi.org/10.1016/j.jcrysgro.2009.09.020, Google ScholarCrossref
  13. 13. M. Imura, K. Nakano, T. Kitano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, K. Shimono, T. Noro, T. Takagi, and A. Bandoh, Phys. Status Solidi A 203, 1626 (2006). https://doi.org/10.1002/pssa.200565401, Google ScholarCrossref
  14. 14. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, Jpn. J. Appl. Phys., Part 1 46, 1458 (2007). https://doi.org/10.1143/JJAP.46.1458, Google ScholarCrossref
  15. 15. K. Shi, D. B. Li, H. P. Song, Y. Guo, J. Wang, and X. Q. Xu, Nanoscale Res. Lett. 6, 50 (2011) https://doi.org/10.1007/s11671-010-9796-6. Google ScholarCrossref
  16. 16. K. Shi, X. L. Liu, D. B. Li, J. Wang, H. P. Song, X. Q. Xu, H. Y. Wei, C. M. Jiao, S. Y. Yang, H. Song, Q. S. Zhu, and Z. G. Wang, Appl. Surf. Sci. 257, 8110 (2011). https://doi.org/10.1016/j.apsusc.2011.04.118, Google ScholarCrossref
  17. 17. M. Imura, A. Hoshino, K. Nakano, M. Tsuda, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 1 44, 7418 (2005). https://doi.org/10.1143/JJAP.44.7418, Google ScholarCrossref, ISI
  18. 18. J.-J. Wu, K. Okuura, K. Fujita, K. Okumura, H. Miyake, and K. Hiramatsu, J. Cryst. Growth 311, 4473 (2009). https://doi.org/10.1016/j.jcrysgro.2009.08.009, Google ScholarCrossref
  19. 19. G. Vogg, C. R. Miskys, J. A. Garrido, M. Hermann, M. Eickhoff, and M. Stutzmann, J. Appl. Phys. 96, 895 (2004). https://doi.org/10.1063/1.1759088, Google ScholarScitation
  20. 20. C. R. Miskys, J. A. Garrido, M. Hermann, M. Eickhoff, C. E. Nebel, M. Stutzmann, and G. Vogg, Appl. Phys. Lett. 85, 3699 (2004). https://doi.org/10.1063/1.1811382, Google ScholarScitation
  21. 21. K. Hirama, Y. Taniyasu, and M. Kasu, J. Appl. Phys. 108, 013528 (2010). https://doi.org/10.1063/1.3452362, Google ScholarScitation, ISI
  22. 22. H. Kröncke, S. Figge, B. M. Epelbaum, and D. Hommel, Acta Phys. Pol., A 114, 1193 (2008). https://doi.org/10.12693/APhysPolA.114.1193, Google ScholarCrossref
  23. 23. J. W. Liu, M. Y. Liao, M. Imura, and Y. Koide, Appl. Phys. Lett. 101, 252108 (2012). https://doi.org/10.1063/1.4772985, Google ScholarScitation, ISI
  24. 24. P. D. C. King, T. D. Veal, C. F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, J. Schörmann, D. J. As, K. Lischka, H. Lu, and W. J. Schaff, Phys. Rev. B 77, 115213 (2008). https://doi.org/10.1103/PhysRevB.77.115213, Google ScholarCrossref
  25. 25. M. Imura, S. Tsuda, T. Nagata, H. Takeda, M. Liao, A. Yang, Y. Yamashita, H. Yoshikawa, Y. Koide, K. Kobayashi, T. Yamaguchi, M. Kaneko, N. Uematsu, T. Araki, and Y. Nanishi, J. Appl. Phys. 114, 033505 (2013). https://doi.org/10.1063/1.4812570, Google ScholarScitation, ISI
  26. 26. M. Kubovic, M. Kasu, and H. Kageshima, Appl. Phys. Lett. 96, 052101 (2010). https://doi.org/10.1063/1.3291616, Google ScholarScitation
  27. 27. S. A. O. Russell, L. Cao, D. Qi, A. Tallaire, K. G. Crawford, A. T. S. Wee, and D. A. J. Moran, Appl. Phys. Lett. 103, 202112 (2013). https://doi.org/10.1063/1.4832455, Google ScholarScitation, ISI
  28. 28. M. Tordjman, C. Saguy, A. Bolker, and R. Kalish, Adv. Mater. Interfaces 1, 1300155 (2014). https://doi.org/10.1002/admi.201300155, Google ScholarCrossref
  29. 29. K. G. Crawford, L. Cao, D. Qi, A. Tallaire, E. Limiti, C. Verona, A. T. S. Wee, and D. A. J. Moran, Appl. Phys. Lett. 108, 042103 (2016). https://doi.org/10.1063/1.4940749, Google ScholarScitation, ISI
  30. 30. J. W. Liu, M. Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, J. Appl. Phys. 114, 084108 (2013). https://doi.org/10.1063/1.4819108, Google ScholarScitation, ISI
  31. 31. J. W. Liu, M. Y. Liao, S. H. Cheng, M. Imura, and Y. Koide, J. Appl. Phys. 113, 123706 (2013). https://doi.org/10.1063/1.4798366, Google ScholarScitation, ISI
  1. © 2017 Author(s). Published by AIP Publishing.