No Access Submitted: 03 June 2016 Accepted: 30 September 2016 Published Online: 17 October 2016
Physics of Fluids 28, 101701 (2016); https://doi.org/10.1063/1.4964759
more...View Affiliations
View Contributors
  • L. Bordois
  • F. Auclair
  • A. Paci
  • Y. Dossmann
  • T. Gerkema
  • C. Nguyen
We modeled internal tide generation above a high sinusoidal ridge in a fluid with a mid-depth pycnocline and developed an original method to quantify internal tide vertical mode amplitude in two-dimensional-vertical simulations. Since lowest modes can propagate over considerable distances, while high modes are more likely to dissipate locally, estimating the tidal energy distribution among vertical modes is necessary to investigate the spatial redistribution of the tidal energy. Our numerical approach allows expansion and verification of previous analytical studies over a larger range of configurations. The tidal energy distribution among vertical modes is shown here to be dependent on the topographic resonance criterion and the topographic blocking parameter.
We gratefully thank the computer team of the Laboratoire d’Aérologie for its support. L. Bordois’s Ph.D. thesis was funded by a MNERT scholarship.
  1. 1. W. Munk and C. Wunsch, “Abyssal recipes II: Energetics of tidal and wind mixing,” Deep Sea Res., Part I 45, 1977–2010 (1998). https://doi.org/10.1016/S0967-0637(98)00070-3, Google ScholarCrossref
  2. 2. G. D. Egbert and R. D. Ray, “Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data,” Nature 405, 775–778 (2000). https://doi.org/10.1038/35015531, Google ScholarCrossref
  3. 3. C. Wunsch and R. Ferrari, “Vertical mixing, energy, and the general circulation of the oceans,” Annu. Rev. Fluid Mech. 36, 281–314 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122121, Google ScholarCrossref
  4. 4. R. Ferrari and C. Wunsch, “Ocean circulation kinetic energy: Reservoirs, sources, and sinks,” Annu. Rev. Fluid Mech. 41, 253–282 (2009). https://doi.org/10.1146/annurev.fluid.40.111406.102139, Google ScholarCrossref
  5. 5. V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides: Theoretical Modeling and Observational Evidence (Cambridge University Press, 2005). Google ScholarCrossref
  6. 6. S. Falahat, J. Nycander, F. Roquet, and M. Zarroug, “Global calculation of tidal energy conversion into vertical normal modes,” J. Phys. Oceanogr. 44, 3225–3244 (2014). https://doi.org/10.1175/JPO-D-14-0002.1, Google ScholarCrossref
  7. 7. T. Gerkema and J. T. F. Zimmerman, An Introduction to Internal Waves: Lecture Notes (R. NIOZ, 2008). Google Scholar
  8. 8. Y. Dossmann, F. Auclair, and A. Paci, “Topographically induced internal solitary waves in a pycnocline: Primary generation and topographic control,” Phys. Fluids 25, 066601 (2013). https://doi.org/10.1063/1.4808163, Google ScholarScitation
  9. 9. F. Auclair, C. Estournel, J. W. Floor, M. Herrmann, C. Nguyen, and P. Marsaleix, “A non-hydrostatic algorithm for free-surface ocean modelling,” Ocean Modell. 36, 49–70 (2011). https://doi.org/10.1016/j.ocemod.2010.09.006, Google ScholarCrossref
  10. 10. L. Bordois, “Modélisation Numérique de La Marée Interne: Contrôles Hydrauliques et Topographiques,” Université Paul Sabatier–Toulouse III, 2015; http://poc.obs-mip.fr/auclair/WOcean.fr/SNH/Pub/Modulus/NBQ/index_snh_nbq.htm. Google Scholar
  11. 11. Y. Dossmann, F. Auclair, and A. Paci, “Topographically induced internal solitary waves in a pycnocline: Secondary generation and selection criteria,” Phys. Fluids 25, 086603 (2013). https://doi.org/10.1063/1.4817373, Google ScholarScitation, ISI
  12. 12. Y. Dossmann, “Ondes internes générées sur une dorsale océanique: Du laboratoire à l’océan,” Ph.D. thesis, Université Paul Sabatier–Toulouse III, 2012. Google Scholar
  13. 13. F. Auclair, L. Bordois, Y. Dossmann, T. Duhaut, C. Estournel, J. W. Floor, P. Marsaleix, C. Nguyen, A. Paci, and C. Ulses, “Implementation of a time-dependent bathymetry in a free-surface ocean model: Application to internal wave generation,” Ocean Modell. 80, 1–9 (2014). https://doi.org/10.1016/j.ocemod.2014.03.002, Google ScholarCrossref
  14. 14. T. Gerkema and J. T. F. Zimmerman, “Generation of nonlinear internal tides and solitary waves,” J. Phys. Oceanogr. 25, 1081–1094 (1995). https://doi.org/10.1175/1520-0485(1995)025¡1081:GONITA¿2.0.CO;2, Google ScholarCrossref
  15. 15. N. Grisouard, C. Staquet, and T. Gerkema, “Generation of internal solitary waves in a pycnocline by an internal wave beam: A numerical study,” J. Fluid Mech. 676, 491–513 (2011). https://doi.org/10.1017/jfm.2011.61, Google ScholarCrossref
  16. 16. M. J. Mercier, L. Gostiaux, K. Helfrich, J. Sommeria, S. Viboud, H. Didelle, S. J. Ghaemsaidi, T. Dauxois, and T. Peacock, “Large-scale, realistic laboratory modeling of M2 internal tide generation at the luzon strait,” Geophys. Res. Lett. 40, 5704–5709, doi:10.1002/2013GL058064 (2013). https://doi.org/10.1002/2013GL058064, Google ScholarCrossref
  17. 17. Y. Dossmann, A. Paci, F. Auclair, M. Lepilliez, and E. Cid, “Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements,” Phys. Fluids 26, 056601 (2014). https://doi.org/10.1063/1.4873202, Google ScholarScitation
  18. 18. V. Vlasenko and N. Stashchuk, “Amplification and suppression of internal waves by tides over variable bottom topography,” J. Phys. Oceanogr. 36, 1959–1973 (2006). https://doi.org/10.1175/JPO2958.1, Google ScholarCrossref
  1. © 2016 Author(s). Published by AIP Publishing.