No Access Submitted: 21 July 2016 Accepted: 22 September 2016 Published Online: 10 October 2016
Appl. Phys. Lett. 109, 153105 (2016); https://doi.org/10.1063/1.4964269
more...View Affiliations
View Contributors
  • Xuan Wang
  • Hamidreza Rahmani
  • Jun Zhou
  • Matthew Gorfien
  • Joshua Mendez Plaskus
  • Dong Li
  • Ryan Voss
  • Cory A. Nelson
  • Kin Wai Lei
  • Abraham Wolcott
  • Xiaoyang Zhu
  • Junjie Li
  • Jianming Cao
We directly monitored the lattice dynamics in PbSe quantum dots (QD) induced by laser excitation using ultrafast electron diffraction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any significant phonon bottleneck effect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon-induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates significantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.
This work is supported by the Internal Research Program of Institute of Physics Chinese Academy of Sciences, the National Science Foundation of USA (Grant No. 1207252), National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.
  1. 1. F. W. Wise, “ Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000). https://doi.org/10.1021/ar970220q, Google ScholarCrossref
  2. 2. R. D. Schaller and V. I. Klimov, “ High efficiency carrier multiplication in pbse nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92, 186601 (2004). https://doi.org/10.1103/PhysRevLett.92.186601, Google ScholarCrossref
  3. 3. R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “ High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1, 189–194 (2005). https://doi.org/10.1038/nphys151, Google ScholarCrossref
  4. 4. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “ Highly efficient multiple exciton generation in colloidal pbse and pbs quantum dots,” Nano Lett. 5, 865–871 (2005). https://doi.org/10.1021/nl0502672, Google ScholarCrossref
  5. 5. M. T. Trinh, A. J. Houtepen, J. M. Schins, T. Hanrath, J. Piris, W. Knulst, A. P. Goossens, and L. D. Siebbeles, “ In spite of recent doubts carrier multiplication does occur in pbse nanocrystals,” Nano Lett. 8, 1713–1718 (2008). https://doi.org/10.1021/nl0807225, Google ScholarCrossref
  6. 6. J. Pijpers, R. Ulbricht, K. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan, and M. Bonn, “ Assessment of carrier-multiplication efficiency in bulk pbse and pbs,” Nat. Phys. 5, 811–814 (2009). https://doi.org/10.1038/nphys1393, Google ScholarCrossref
  7. 7. G. Nair, S. M. Geyer, L.-Y. Chang, and M. G. Bawendi, “ Carrier multiplication yields in pbs and pbse nanocrystals measured by transient photoluminescence,” Phys. Rev. B 78, 125325 (2008). https://doi.org/10.1103/PhysRevB.78.125325, Google ScholarCrossref
  8. 8. V. I. Klimov, A. Mikhailovsky, D. McBranch, C. Leatherdale, and M. G. Bawendi, “ Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000). https://doi.org/10.1126/science.287.5455.1011, Google ScholarCrossref
  9. 9. R. Schaller, M. Petruska, and V. Klimov, “ Tunable near-infrared optical gain and amplified spontaneous emission using pbse nanocrystals,” J. Phys. Chem. B 107, 13765–13768 (2003). https://doi.org/10.1021/jp0311660, Google ScholarCrossref
  10. 10. J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “ Evidence for barrierless auger recombination in pbse nanocrystals: A pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101, 217401 (2008). https://doi.org/10.1103/PhysRevLett.101.217401, Google ScholarCrossref
  11. 11. S. Kilina and B. F. Habenicht, Excitonic and Vibrational Dynamics in Nanotechnology ( Pan Stanford Publishing, 2009). Google ScholarCrossref
  12. 12. B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “ Interband and intraband optical studies of pbse colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002). https://doi.org/10.1021/jp021187e, Google ScholarCrossref
  13. 13. J. M. Harbold, H. Du, T. D. Krauss, K.-S. Cho, C. B. Murray, and F. W. Wise, “ Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal pbse nanocrystals,” Phys. Rev. B 72, 195312 (2005). https://doi.org/10.1103/PhysRevB.72.195312, Google ScholarCrossref
  14. 14. R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “ Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005). https://doi.org/10.1103/PhysRevLett.95.196401, Google ScholarCrossref
  15. 15. J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “ Vibronic quantum beats in pbs microcrystallites,” Phys. Rev. B 48, 2819 (1993). https://doi.org/10.1103/PhysRevB.48.2819, Google ScholarCrossref
  16. 16. T. D. Krauss and F. W. Wise, “ Coherent acoustic phonons in a semiconductor quantum dot,” Phys. Rev. Lett. 79, 5102 (1997). https://doi.org/10.1103/PhysRevLett.79.5102, Google ScholarCrossref
  17. 17. T. D. Krauss and F. W. Wise, “ Raman-scattering study of exciton-phonon coupling in pbs nanocrystals,” Phys. Rev. B 55, 9860 (1997). https://doi.org/10.1103/PhysRevB.55.9860, Google ScholarCrossref
  18. 18. P. Ruello and V. E. Gusev, “ Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015). https://doi.org/10.1016/j.ultras.2014.06.004, Google ScholarCrossref
  19. 19. Z. Zhang, Nano/Microscale Heat Transfer ( McGraw-Hill, New York, 2007). Google Scholar
  20. 20. X. Wang, S. Nie, J. Li, R. Clinite, M. Wartenbe, M. Martin, W. Liang, and J. Cao, “ Electronic grüneisen parameter and thermal expansion in ferromagnetic transition metal,” Appl. Phys. Lett. 92, 121918 (2008). https://doi.org/10.1063/1.2902170, Google ScholarScitation, ISI
  21. 21. X. Wang, S. Nie, H. Park, J. Li, R. Clinite, R. Li, X. Wang, and J. Cao, “ Measurement of femtosecond electron pulse length and the temporal broadening due to space charge,” Rev. Sci. Instrum. 80, 013902 (2009). https://doi.org/10.1063/1.3062863, Google ScholarScitation
  22. 22. A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “ Anomalously large polarization effect responsible for excitonic red shifts in pbse quantum dot solids,” J. Phys. Chem. Lett. 2, 795–800 (2011). https://doi.org/10.1021/jz200080d, Google ScholarCrossref
  23. 23. S. Nie, X. Wang, J. Li, R. Clinite, and J. Cao, “ Femtosecond electron diffraction: Direct probe of ultrafast structural dynamics in metal films,” Microsc. Res. Tech. 72, 131–143 (2009). https://doi.org/10.1002/jemt.20666, Google ScholarCrossref
  24. 24. S. Novikova and N. K. Abrikosov, “ Investigation of the thermal expansion of lead chalcogenides,” Sov. Phys. Solid State 5, 1397–1398 (1964). Google Scholar
  25. 25. D. B. Sirdeshmukh, L. Sirdeshmukh, and K. Subhadra, Micro- and Macro-Properties of Solids ( Springer, 2006). Google Scholar
  26. 26. Y. Noda, S. Ohba, S. Sato, and Y. Saito, “ Charge distribution and atomic thermal vibration in lead chalcogenide crystals,” Acta Crystallogr., Sect. B: Struct. Sci. 39, 312–317 (1983). https://doi.org/10.1107/S0108768183002463, Google ScholarCrossref
  27. 27. F. Rossi and T. Kuhn, “ Theory of ultrafast phenomena in photoexcited semiconductors,” Rev. Mod. Phys. 74, 895 (2002). https://doi.org/10.1103/RevModPhys.74.895, Google ScholarCrossref
  28. 28. A. M. C. L. Tien and F. M. Gerner, Micro-Scale Energy Transport ( Taylor & Francis, Washington, DC, 1998). Google Scholar
  29. 29. G. M. Vanacore, J. Hu, W. Liang, S. Bietti, S. Sanguinetti, and A. H. Zewail, “ Diffraction of quantum dots reveals nanoscale ultrafast energy localization,” Nano Lett. 14, 6148–6154 (2014). https://doi.org/10.1021/nl502293a, Google ScholarCrossref
  30. 30. S. Schmitt-Rink, D. Miller, and D. S. Chemla, “ Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987). https://doi.org/10.1103/PhysRevB.35.8113, Google ScholarCrossref
  31. 31. D. Parkinson and J. Quarrington, “ The molar heats of lead sulphide, selenide and telluride in the temperature range 20 k to 260 k,” Proc. Phys. Soc., Sect. A 67, 569 (1954). https://doi.org/10.1088/0370-1298/67/7/301, Google ScholarCrossref
  32. 32. V. I. Klimov, “ Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion,” J. Phys. Chem. B 110, 16827–16845 (2006). https://doi.org/10.1021/jp0615959, Google ScholarCrossref
  33. 33. J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “ Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005). https://doi.org/10.1103/PhysRevB.71.125327, Google ScholarCrossref
  34. 34. T. Inoshita and H. Sakaki, “ Electron relaxation in a quantum dot: Significance of multiphonon processes,” Phys. Rev. B 46, 7260 (1992). https://doi.org/10.1103/PhysRevB.46.7260, Google ScholarCrossref
  35. 35. B. K. Ridley, Quantum Processes in Semiconductors ( Oxford University Press, 2013). Google ScholarCrossref
  36. 36. H. Park, X. Wang, S. Nie, R. Clinite, and J. Cao, “ Mechanism of coherent acoustic phonon generation under nonequilibrium conditions,” Phys. Rev. B 72, 100301 (2005). https://doi.org/10.1103/PhysRevB.72.100301, Google ScholarCrossref
  37. 37. Y. Zhang, X. Ke, C. Chen, J. Yang, and P. Kent, “ Thermodynamic properties of pbte, pbse, and pbs: First-principles study,” Phys. Rev. B 80, 024304 (2009). https://doi.org/10.1103/PhysRevB.80.024304, Google ScholarCrossref
  38. 38. K. K. Zhuravlev, J. M. Pietryga, R. K. Sander, and R. D. Schaller, “ Optical properties of pbse nanocrystal quantum dots under pressure,” Appl. Phys. Lett. 90, 43110 (2007). https://doi.org/10.1063/1.2431777, Google ScholarScitation
  1. © 2016 Author(s). Published by AIP Publishing.