No Access Submitted: 24 June 2016 Accepted: 28 August 2016 Published Online: 15 September 2016
Journal of Applied Physics 120, 113102 (2016); https://doi.org/10.1063/1.4962459
more...View Affiliations
View Contributors
  • Julian Hornich
  • Christoph Pflaum
  • Christoph Brabec
  • Karen Forberich
We are studying the influence of spherical silver nanoparticles (AgNP) in absorbing media by numerically solving the Maxwell's equations. Our simulations show that the near-field absorption enhancement introduced by a single AgNP in the surrounding medium is increasing with the growing particle diameter. However, we observe that the relative absorption per particle volume is on a similar level for different particle sizes; hence, different numbers of particles with the same total volume yield the same near-field absorption enhancement. We also investigate the effect of non-absorbing shells around the AgNP with the conclusion that even very thin shells suppress the beneficial effects of the particles noticeably. Additionally, we include AgNP in an organic solar cell at different vertical positions with different particle spacings and observe the beneficial effects for small AgNP and the scattering dependent performance for larger particles.
The authors gratefully acknowledge the support from the Erlangen Graduate School in Advanced Optical Technologies (SAOT), the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen-Nuremberg and the project Solar Technologies go Hybrid (SolTech), which are all funded by the German Research Foundation (DFG) in the framework of the German excellence initiative. Karen Forberich acknowledges the support of the EU-project SOLPROCEL (“SOLUTION PROCESSED HIGH PERFORMANCE TRANSPARENT ORGANIC PHOTOVOLTAIC CELLS”, Grant No. 604506). Julian Hornich acknowledges the use of the service and facilities of the Energie Campus Nürnberg (EnCn) and financial support through the “Aufbruch Bayern” initiative of the state of Bavaria. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant No. pr87fe.
  1. 1. M. A. Green and K. Emery, “ Solar cell efficiency tables (version 47),” Prog. Photovoltaics: Res. Appl. 24(1), 3–11 (2016). https://doi.org/10.1002/pip.2728, Google ScholarCrossref
  2. 2. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “ Organic photovoltaics: Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25(17), 2377–2377 (2013). https://doi.org/10.1002/adma.201370107, Google ScholarCrossref
  3. 3. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “ Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” J. Appl. Phys. 93, 073307 (2008). Google ScholarAbstract
  4. 4. S.-W. Baek, J. Noh, C.-H. Lee, B. Kim, M.-K. Seo, and J.-Y. Lee, “ Plasmonic forward scattering effect in organic solar cells: A powerful optical engineering method,” Sci. Rep. 3, 1726 (2013) https://doi.org/10.1038/srep01726. Google ScholarCrossref
  5. 5. L. Lu, Z. Luo, T. Xu, and L. Yu, “ Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13, 59–64 (2013). https://doi.org/10.1021/nl3034398, Google ScholarCrossref
  6. 6. H. A. Atwater and A. Polman, “ Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). https://doi.org/10.1038/nmat2629, Google ScholarCrossref
  7. 7. F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “ Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” J. Appl. Phys. 95, 013305 (2009) https://doi.org/10.1063/1.3174914. Google ScholarScitation
  8. 8. E. Hao and G. C. Schatz, “ Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004). https://doi.org/10.1063/1.1629280, Google ScholarScitation, ISI
  9. 9. N. M. Lawandy, “ Localized surface plasmon singularities in amplifying media,” J. Appl. Phys. 85, 5040 (2004) https://doi.org/10.1063/1.1825058. Google ScholarScitation
  10. 10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “ The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). https://doi.org/10.1021/jp026731y, Google ScholarCrossref
  11. 11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series ( Wiley, 1983). Google Scholar
  12. 12. J.-Y. Lee and P. Peumans, “ The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010). https://doi.org/10.1364/OE.18.010078, Google ScholarCrossref
  13. 13. P. Spinelli and A. Polman, “ Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Opt. Express 20(S5), A641–A654 (2012). https://doi.org/10.1364/OE.20.00A641, Google ScholarCrossref
  14. 14. F. Guo, P. Kubis, T. Stubhan, N. Li, D. Baran, T. Przybilla, E. Spiecker, K. Forberich, and C. Brabec, “ Fully solution-processing route toward highly transparent polymer solar cells,” ACS Appl. Mater. Interfaces 6(20), 18251–18257 (2014). https://doi.org/10.1021/am505347p, Google ScholarCrossref
  15. 15. K. Yee, “ Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966). https://doi.org/10.1109/TAP.1966.1138693, Google ScholarCrossref
  16. 16. C. Pflaum and Z. Rahimi, “ An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity,” Numer. Linear Algebra Appl. 18(4), 653–670 (2011). https://doi.org/10.1002/nla.746, Google ScholarCrossref
  17. 17. S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. Brabec, “ Numerical simulation of light propagation in silver nanowire films using time-harmonic inverse iterative method,” Appl. Phys. Lett. 113(15), 154303 (2013) https://doi.org/10.1063/1.4801919. Google ScholarScitation
  18. 18. Z. Rahimi, A. Erdmann, and C. Pflaum, “ Finite integration (FI) method for modelling optical waves in lithography masks,” in International Conference on Electromagnetics in Advanced Applications (ICEAA'09) (2009), pp. 809–812. Google ScholarCrossref
  19. 19. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “ Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Appl. Phys. Lett. 86(1), 487–496 (1999) https://doi.org/10.1063/1.370757. Google ScholarScitation
  20. 20. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters ( Springer, 1995), Vol. 3. Google ScholarCrossref
  21. 21. B. P. Rand, P. Peumans, and S. R. Forrest, “ Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). https://doi.org/10.1063/1.1812589, Google ScholarScitation
  22. 22. J.-P. Berenger, “ Perfectly matched layer for the FDTD solution of wave-structure interaction problems,” IEEE Trans. Antennas Propag. 44(1), 110–117 (1996). https://doi.org/10.1109/8.477535, Google ScholarCrossref
  23. 23. H. Choi, J.-P. Lee, S.-J. Ko, J.-W. Jung, H. Park, S. Yoo, O. Park, J.-R. Jeong, S. Park, and J. Y. Kim, “ Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells,” Nano Lett. 13(5), 2204–2208 (2013). https://doi.org/10.1021/nl400730z, Google ScholarCrossref
  24. 24. A. Čampa, see http://lpvo.fe.uni-lj.si/en/software/nika/ for “NIKA software” (last accessed June 2016). Google Scholar
  25. 25. S. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “ The effect of particle vertical positioning on the absorption enhancement in plasmonic organic solar cells,” J. Appl. Phys. 111, 124301 (2012). https://doi.org/10.1063/1.4729293, Google ScholarScitation
  1. © 2016 Author(s). Published by AIP Publishing.