No Access Submitted: 06 June 2016 Accepted: 08 August 2016 Published Online: 29 August 2016
J. Chem. Phys. 145, 084702 (2016); https://doi.org/10.1063/1.4961408
more...View Affiliations
Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.
This publication was made possible by NPRP Grant No. 8-1648-2-688 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely responsibility of the authors. We thank the High Performance Computing Center of Texas A&M University at Qatar for generous resource allocation.
  1. 1. J. Relat-Goberna and S. Garcia-Manyes, “Direct observation of the dynamics of self-assembly of individual solvation layers in molecularly confined liquids,” Phys. Rev. Lett. 114, 258303 (2015). https://doi.org/10.1103/PhysRevLett.114.258303, Google ScholarCrossref
  2. 2. S. Granick, “Motions and relaxations of confined liquids,” Science 253, 1374–1379 (1991). https://doi.org/10.1126/science.253.5026.1374, Google ScholarCrossref
  3. 3. D. Addari and A. Satta, “Influence of HCOO on calcite growth from first principles,” J. Phys. Chem. C 119, 19780–19788 (2015). https://doi.org/10.1021/acs.jpcc.5b04161, Google ScholarCrossref
  4. 4. A. D. Côté, R. Darkins, and D. M. Duffy, “Deformation twinning and the role of amino acids and magnesium in calcite hardness from molecular simulation,” Phys. Chem. Chem. Phys. 17, 20178–20184 (2015). https://doi.org/10.1039/C5CP03370E, Google ScholarCrossref
  5. 5. N. Bovet, M. Yang, M. S. Javadi, and S. L. S. Stipp, “Interactions of alcohols with the calcite surface,” Phys. Chem. Chem. Phys. 17, 3490–3496 (2014). https://doi.org/10.1039/C4CP05235H, Google ScholarCrossref
  6. 6. P. Geysermans and C. Noguera, “Advances in atomistic simulations of mineral surfaces,” J. Mater. Chem. 19, 7807–7821 (2009). https://doi.org/10.1039/b903642c, Google ScholarCrossref
  7. 7. J. L. Arias and M. S. Fernández, “Polysaccharides and proteoglycans in calcium carbonate-based biomineralization,” Chem. Rev. 108, 4475–4482 (2008). https://doi.org/10.1021/cr078269p, Google ScholarCrossref
  8. 8. W. J. J. Huijgen, G. J. Witkamp, and R. N. J. Comans, “Mineral CO2 sequestration by steel slag carbonation,” Environ. Sci. Technol. 39, 9676–9682 (2005). https://doi.org/10.1021/es050795f, Google ScholarCrossref
  9. 9. V. Alvarado and E. Manrique, “Enhanced oil recovery: An update review,” Energies 3, 1529–1575 (2010). https://doi.org/10.3390/en3091529, Google ScholarCrossref
  10. 10. D. M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H. A. Arafat, and J. H. Lienhard-V, “Scaling and fouling in membrane distillation for desalination applications: A review,” Desalination 356, 294–313 (2015). https://doi.org/10.1016/j.desal.2014.06.031, Google ScholarCrossref
  11. 11. D. S. Novikov, E. Fieremans, J. H. Jensen, and J. A. Helpern, “Random walks with barriers,” Nat. Phys. 7, 508–514 (2011). https://doi.org/10.1038/nphys1936, Google ScholarCrossref
  12. 12. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, New York, 1987). Google Scholar
  13. 13. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002). Google ScholarCrossref
  14. 14. J. Mittal, T. M. Truskett, J. R. Errington, and G. Hummer, “Layering and position-dependent diffusive dynamics of confined fluids,” Phys. Rev. Lett. 100, 145901 (2008). https://doi.org/10.1103/PhysRevLett.100.145901, Google ScholarCrossref
  15. 15. P. Liu, E. Harder, and B. J. Berne, “On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water,” J. Phys. Chem. B 108, 6595–6602 (2004). https://doi.org/10.1021/jp0375057, Google ScholarCrossref
  16. 16. J. Martí and M. C. Gordillo, “Temperature effects on the static and dynamic properties of liquid water inside nanotubes,” Phys. Rev. E 64, 021504 (2001). https://doi.org/10.1103/PhysRevE.64.021504, Google ScholarCrossref
  17. 17. A. Striolo, “The mechanism of water diffusion in narrow carbon nanotubes,” Nano Lett. 6, 633–639 (2006). https://doi.org/10.1021/nl052254u, Google ScholarCrossref
  18. 18. J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, “Effects of substrate and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study,” Geochim. Cosmochim. Acta 70, 562–582 (2006). https://doi.org/10.1016/j.gca.2005.10.006, Google ScholarCrossref
  19. 19. G. Milano, G. Guerra, and F. Müller-Plathe, “Anisotropic diffusion of small penetrants in the δ crystalline phase of syndiotactic polystyrene: A molecular dynamics simulation study,” Chem. Mater. 14, 2977–2982 (2002). https://doi.org/10.1021/cm011297i, Google ScholarCrossref
  20. 20. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. Theory Comput. 4, 435–447 (2008). https://doi.org/10.1021/ct700301q, Google ScholarCrossref
  21. 21. C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, and J. J. DeYoreo, “Formation of chiral morphologies through selective binding of amino acids to calcite surface steps,” Nature 411, 775–779 (2001). https://doi.org/10.1038/35081034, Google ScholarCrossref
  22. 22. S. Xiao, S. Edwards, and F. Gräter, “A new transferable forcefield for simulating the mechanics of CaCO3 crystals,” J. Phys. Chem. C 115, 20067–20075 (2011). https://doi.org/10.1021/jp202743v, Google ScholarCrossref
  23. 23. H. Chen, A. Z. Panagiotopoulos, and E. P. Gianellis, “Atomistic molecular dynamics simulations of carbohydrate-calcite interactions in concentrated brine,” Langmuir 31, 2407–2413 (2015). https://doi.org/10.1021/la504595g, Google ScholarCrossref
  24. 24. M. G. Martin and J. I. Siepmann, “Transferable potential for phase equilibria. 1. United-atom description of n-alkanes,” J. Phys. Chem. B 102, 2569–2577 (1998). https://doi.org/10.1021/jp972543+, Google ScholarCrossref
  25. 25. J. J. Poroff and J. I. Siepmann, “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen,” AIChE J. 47, 1676–1682 (2001). https://doi.org/10.1002/aic.690470719, Google ScholarCrossref
  26. 26. T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An N ⋅ log(N) method for ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092 (1993). https://doi.org/10.1063/1.464397, Google ScholarScitation, ISI
  27. 27. S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334, Google ScholarScitation, ISI
  28. 28. W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695, Google ScholarCrossref
  29. 29. J. Chowdhary and B. M. Ladanyi, “Molecular simulation study of water mobility in aerosol-OT reverse micelles,” J. Phys. Chem. A 115, 6306–6316 (2011). https://doi.org/10.1021/jp201866t, Google ScholarCrossref
  30. 30. S. J. Marrink and H. J. C. Berendsen, “Simulation of water transport through a lipid membrane,” J. Phys. Chem. 98, 4155–4168 (1994). https://doi.org/10.1021/j100066a040, Google ScholarCrossref
  31. 31. S. Sriraman, I. G. Kevrekidis, and G. Hummer, “Coarse master equation from Bayesian analysis of replica molecular dynamics simulations,” J. Phys. Chem. B 109, 6479–6484 (2005). https://doi.org/10.1021/jp046448u, Google ScholarCrossref
  32. 32. M. Sega, R. Vallauri, and S. Malchionna, “Diffusion of water in confined geometry: The case of a multilamellar bilayer,” Phys. Rev. E 72, 041201 (2005). https://doi.org/10.1103/PhysRevE.72.041201, Google ScholarCrossref
  33. 33. J. R. Kirkwood, Mathematical Physics with Partial Differential Equations (Academic Press, Amsterdam, 2013). Google Scholar
  34. 34. R. B. Bird, W. E. Stewart, and E. N. Lighfoot, Transport Phenomena, 2nd ed. (John Wiley & Sons Inc., New York, 2002). Google Scholar
  35. 35. R. J. Speedy, “Diffusion in the hard sphere fluid,” Mol. Phys. 62, 509–515 (1987). https://doi.org/10.1080/00268978700102371, Google ScholarCrossref
  36. 36. R. F. Cracknell, D. Nicholson, and K. E. Gubbins, “Molecular dynamics study of the self-diffusion of supercritical methane in slit-shaped graphitic micropores,” J. Chem. Soc., Faraday Trans. 91, 1377–1383 (1995). https://doi.org/10.1039/ft9959101377, Google ScholarCrossref
  37. 37. F. F. Abraham, “The interfacial density profile of Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation,” J. Chem. Phys. 68, 3713–3716 (1978). https://doi.org/10.1063/1.436229, Google ScholarScitation
  38. 38. J. Zhou and W. Wang, “Adsorption and diffusion of supercritical carbon dioxide in slit pores,” Langmuir 16, 8063–8070 (2000). https://doi.org/10.1021/la000216e, Google ScholarCrossref
  39. 39. D. Wang, C. He, M. P. Stoykovich, and D. K. Schwartz, “Nanoscale topography influences polymer surface diffusion,” ACS Nano 9, 1656–1664 (2015). https://doi.org/10.1021/nn506376n, Google ScholarCrossref
  1. © 2016 Author(s). Published by AIP Publishing.