No Access
Published Online: 22 November 2016
Accepted: June 2016
Journal of Physical and Chemical Reference Data 45, 043102 (2016); https://doi.org/10.1063/1.4954402
more...View Affiliations
  • National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA
  • a)

    b)

    c)

  • This review is being published simultaneously by Reviews of Modern Physics.

    This report was prepared by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The members of the task group are F. Cabiati, Istituto Nazionale di Ricerca Metrologica, Italy; J. Fischer, Physikalisch-Technische Bundesanstalt, Germany; J. Flowers (deceased), National Physical Laboratory, United Kingdom; K. Fujii, National Metrology Institute of Japan, Japan; S. G. Karshenboim, Pulkovo Observatory, Russian Federation and Max-Planck-Institut für Quantenoptik, Germany; E. de Mirandés, Bureau international des poids et mesures; P. J. Mohr, National Institute of Standards and Technology, United States of America; D. B. Newell, National Institute of Standards and Technology, United States of America; F. Nez, Laboratoire Kastler-Brossel, France; K. Pachucki, University of Warsaw, Poland; T. J. Quinn, Bureau international des poids et mesures; C. Thomas, Bureau international des poids et mesures; B. N. Taylor, National Institute of Standards and Technology, United States of America; B. M. Wood, National Research Council, Canada; and Z. Zhang, National Institute of Metrology, People’s Republic of China.

This paper gives the 2014 self-consistent set of values of the constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA). These values are based on a least-squares adjustment that takes into account all data available up to 31 December 2014. Details of the data selection and methodology of the adjustment are described. The recommended values may also be found at http://physics.nist.gov/constants.
As always, we gratefully acknowledge the help of our many colleagues throughout the world who provided the CODATA Task Group on Fundamental Constants with results prior to formal publication and for promptly and patiently answering our many questions about their work. We wish to thank our fellow Task Group members for their invaluable guidance and suggestions during the course of the 2014 adjustment effort.
  1. Adikaram, D., et al., 2015, Phys. Rev. Lett. 114, 062003. https://doi.org/10.1103/PhysRevLett.114.062003, Google ScholarCrossref
  2. Adkins, G. S., M. Kim, C. Parsons, and R. N. Fell, 2015, Phys. Rev. Lett. 115, 233401. https://doi.org/10.1103/PhysRevLett.115.233401, Google ScholarCrossref
  3. Aldrich, L. T., and A. O. Nier, 1948, Phys. Rev. 74, 1590. https://doi.org/10.1103/PhysRev.74.1590, Google ScholarCrossref
  4. Aleksandrov, V. S., and Y. I. Neronov, 2011, Zh. Eksp. Teor. Fiz. 93, 337 , Google Scholar
    [Aleksandrov, V. S.Y. I. NeronovJETP 93, 305 (2011)]. Google Scholar
  5. Angeli, I., 2004, At. Data Nucl. Data Tables 87, 185. https://doi.org/10.1016/j.adt.2004.04.002, Google ScholarCrossref
  6. Antognini, A., F. Kottmann, F. Biraben, P. Indelicato, F. Nez, and R. Pohl, 2013a, Ann. Phys. (N.Y.) 331, 127. https://doi.org/10.1016/j.aop.2012.12.003, Google ScholarCrossref
  7. Antognini, A., et al., 2013b, Science 339, 417. https://doi.org/10.1126/science.1230016, Google ScholarCrossref
  8. Aoyama, T., M. Hayakawa, T. Kinoshita, and M. Nio, 2012a, Phys. Rev. Lett. 109, 111808. https://doi.org/10.1103/PhysRevLett.109.111808, Google ScholarCrossref
  9. Aoyama, T., M. Hayakawa, T. Kinoshita, and M. Nio, 2012b, Phys. Rev. Lett. 109, 111807. https://doi.org/10.1103/PhysRevLett.109.111807, Google ScholarCrossref
  10. Aoyama, T., M. Hayakawa, T. Kinoshita, and M. Nio, 2014, https://doi.org/arXiv:1412.8284. Google Scholar
  11. Armstrong, T. R., and M. P. Fitzgerald, 2003, Phys. Rev. Lett. 91, 201101. https://doi.org/10.1103/PhysRevLett.91.201101, Google ScholarCrossref
  12. Arnoult, O., F. Nez, L. Julien, and F. Biraben, 2010, Eur. Phys. J. D 60, 243. https://doi.org/10.1140/epjd/e2010-00249-6, Google ScholarCrossref
  13. Arrington, J., 2015, J. Phys. Chem. Ref. Data 44, 031203. https://doi.org/10.1063/1.4922414, Google ScholarScitation
  14. Arrington, J., and I. Sick, 2015, J. Phys. Chem. Ref. Data 44, 031204. https://doi.org/10.1063/1.4921430, Google ScholarScitation
  15. ASD, 2015, “NIST Atomic Spectroscopy Database,” http://pml.nist.gov/asd. Google Scholar
  16. Audi, G., M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, 2012, Chin. Phys. C 36, 1287. https://doi.org/10.1088/1674-1137/36/12/002, Google ScholarCrossref
  17. Azuma, Y., et al., 2015, Metrologia 52, 360. https://doi.org/10.1088/0026-1394/52/2/360, Google ScholarCrossref
  18. Bagley, C. H., and G. G. Luther, 1997, Phys. Rev. Lett. 78, 3047. https://doi.org/10.1103/PhysRevLett.78.3047, Google ScholarCrossref
  19. Baumann, H., F. Pythoud, D. Blas, S. Sibiryakov, A. Eichenberger, and E. E. Klingelé, 2015, Metrologia 52, 635. https://doi.org/10.1088/0026-1394/52/5/635, Google ScholarCrossref
  20. Beier, T., 2000, Phys. Rep. 339, 79.0370-1573 https://doi.org/10.1016/S0370-1573(00)00071-5, Google ScholarCrossref
  21. Beier, T., I. Lindgren, H. Persson, S. Salomonson, P. Sunnergren, H. Häffner, and N. Hermanspahn, 2000, Phys. Rev. A 62, 032510. https://doi.org/10.1103/PhysRevA.62.032510, Google ScholarCrossref
  22. Benayoun, M., P. David, L. DelBuono, and F. Jegerlehner, 2013, Eur. Phys. J. C 73, 2453. https://doi.org/10.1140/epjc/s10052-013-2453-3, Google ScholarCrossref
  23. Bennett, G. W., et al., 2006, Phys. Rev. D 73, 072003. https://doi.org/10.1103/PhysRevD.73.072003, Google ScholarCrossref
  24. Benz, S. P., A. Pollarolo, J. Qu, H. Rogalla, C. Urano, W. L. Tew, P. D. Dresselhaus, and D. R. White, 2011, Metrologia 48, 142. https://doi.org/10.1088/0026-1394/48/3/008, Google ScholarCrossref
  25. Berkeland, D. J., E. A. Hinds, and M. G. Boshier, 1995, Phys. Rev. Lett. 75, 2470. https://doi.org/10.1103/PhysRevLett.75.2470, Google ScholarCrossref
  26. Bernauer, J. C., and M. O. Distler, 2016, https://doi.org/arXiv:1606.02159v1. Google Scholar
  27. Bernauer, J. C., et al., 2014, Phys. Rev. C 90, 015206. https://doi.org/10.1103/PhysRevC.90.015206, Google ScholarCrossref
  28. Bich, W., 2013 (private communication). Google Scholar
  29. BIPM, 2006, International System of Units (SI) (Bureau international des poids et mesures, Sèvres, France), 8th ed., supplement 2014: updates to the 8th edition (2006) of the SI Brochure. Google Scholar
  30. Birge, R. T., 1929, Rev. Mod. Phys. 1, 1. https://doi.org/10.1103/RevModPhys.1.1, Google ScholarCrossref
  31. Blaum, K., 2014 (private communication). Google Scholar
  32. Blaum, K., et al., 2009, J. Phys. B 42, 154021. https://doi.org/10.1088/0953-4075/42/15/154021, Google ScholarCrossref
  33. Bouchendira, R., P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, 2011, Phys. Rev. Lett. 106, 080801. https://doi.org/10.1103/PhysRevLett.106.080801, Google ScholarCrossref
  34. Bourzeix, S., B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, and D. N. Stacey, 1996, Phys. Rev. Lett. 76, 384. https://doi.org/10.1103/PhysRevLett.76.384, Google ScholarCrossref
  35. Breit, G., 1928, Nature (London) 122, 649. https://doi.org/10.1038/122649a0, Google ScholarCrossref
  36. Carlson, C. E., 2015, Prog. Part. Nucl. Phys. 82, 59. https://doi.org/10.1016/j.ppnp.2015.01.002, Google ScholarCrossref
  37. Close, F. E., and H. Osborn, 1971, Phys. Lett. B 34, 400. https://doi.org/10.1016/0370-2693(71)90637-X, Google ScholarCrossref
  38. Cohen, E. R., and B. N. Taylor, 1973, J. Phys. Chem. Ref. Data 2, 663. https://doi.org/10.1063/1.3253130, Google ScholarScitation
  39. Cohen, E. R., and B. N. Taylor, 1987, Rev. Mod. Phys. 59, 1121. https://doi.org/10.1103/RevModPhys.59.1121, Google ScholarCrossref
  40. Colclough, A. R., T. J. Quinn, and T. R. D. Chandler, 1979, Proc. R. Soc. A 368, 125. https://doi.org/10.1098/rspa.1979.0119, Google ScholarCrossref
  41. Cox, M. G., C. Eiø, G. Mana, and F. Pennecchi, 2006, Metrologia 43, S268. https://doi.org/10.1088/0026-1394/43/4/S14, Google ScholarCrossref
  42. Czarnecki, A., B. Krause, and W. J. Marciano, 1996, Phys. Rev. Lett. 76, 3267. https://doi.org/10.1103/PhysRevLett.76.3267, Google ScholarCrossref
  43. Czarnecki, A., W. J. Marciano, and A. Vainshtein, 2003, Phys. Rev. D 67, 073006; https://doi.org/10.1103/PhysRevD.67.073006, Google ScholarCrossref
    Czarnecki, A.W. J. MarcianoA. VainshteinPhys. Rev. D73, 119901(E) (2006). https://doi.org/10.1103/PhysRevD.73.119901, , Google ScholarCrossref
  44. Czarnecki, A., K. Melnikov, and A. Yelkhovsky, 2001, Phys. Rev. A 63, 012509. https://doi.org/10.1103/PhysRevA.63.012509, Google ScholarCrossref
  45. Davier, M., A. Hoecker, B. Malaescu, and Z. Zhang, 2011, Eur. Phys. J. C 71, 1515; https://doi.org/10.1140/epjc/s10052-010-1515-z, Google ScholarCrossref
    Davier, M.A. HoeckerB. MalaescuZ. ZhangEur. Phys. J. C72, 1874(E) (2012). https://doi.org/10.1140/epjc/s10052-012-1874-8, , Google ScholarCrossref
  46. Davier, M., and B. Malaescu, 2013, Eur. Phys. J. C 73, 2597. https://doi.org/10.1140/epjc/s10052-013-2597-1, Google ScholarCrossref
  47. de Beauvoir, B., F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, 1997, Phys. Rev. Lett. 78, 440. https://doi.org/10.1103/PhysRevLett.78.440, Google ScholarCrossref
  48. de Podesta, M., R. Underwood, G. Sutton, P. Morantz, P. Harris, D. F. Mark, F. M. Stuart, G. Vargha, and G. Machin, 2013, Metrologia 50, 354. https://doi.org/10.1088/0026-1394/50/4/354, Google ScholarCrossref
  49. de Podesta, M., I. Yang, D. F. Mark, R. Underwood, G. Sutton, and G. Machin, 2015, Metrologia 52, S353. https://doi.org/10.1088/0026-1394/52/5/S353, Google ScholarCrossref
  50. Devoille, L., N. Feltin, B. Steck, B. Chenaud, S. Sassine, S. Djordevic, O. Séron, and F. Piquemal, 2012, Meas. Sci. Technol. 23, 124011. https://doi.org/10.1088/0957-0233/23/12/124011, Google ScholarCrossref
  51. Diehl, C., K. Blaum, M. Höcker, J. Ketter, D. B. Pinegar, S. Streubel, and R. S. Van Dyck, Jr., 2011, Hyperfine Interact. 199, 291. https://doi.org/10.1007/s10751-011-0324-6, Google ScholarCrossref
  52. DiSciacca, J., et al., 2013, Phys. Rev. Lett. 110, 130801.0031-9007 https://doi.org/10.1103/PhysRevLett.110.130801, Google ScholarCrossref
  53. Dorokhov, A. E., A. E. Radzhabov, and A. S. Zhevlakov, 2014a, JETP Lett. 100, 133. https://doi.org/10.1134/S0021364014140045, Google ScholarCrossref
  54. Dorokhov, A. E., A. E. Radzhabov, and A. S. Zhevlokov, 2014b, Int. J. Mod. Phys. Conf. Ser. 35, 1460401. https://doi.org/10.1142/S2010194514604013, Google ScholarCrossref
  55. Downie, E. J., 2014, EPJ Web Conf. 73, 07005. https://doi.org/10.1051/epjconf/20147307005, Google ScholarCrossref
  56. Eichenberger, A., H. Baumann, B. Jeanneret, B. Jeckelmann, P. Richard, and W. Beer, 2011, Metrologia 48, 133. https://doi.org/10.1088/0026-1394/48/3/007, Google ScholarCrossref
  57. Eides, M. I., 1996, Phys. Rev. A 53, 2953. https://doi.org/10.1103/PhysRevA.53.2953, Google ScholarCrossref
  58. Eides, M. I., 2015 (private communication). Google Scholar
  59. Eides, M. I., and H. Grotch, 1997, Ann. Phys. (N.Y.) 260, 191. https://doi.org/10.1006/aphy.1997.5725, Google ScholarCrossref
  60. Eides, M. I., H. Grotch, and V. A. Shelyuto, 2001, Phys. Rep. 342, 63. https://doi.org/10.1016/S0370-1573(00)00077-6, Google ScholarCrossref
  61. Eides, M. I., H. Grotch, and V. A. Shelyuto, 2007, Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics, Vol. 222 (Springer, Berlin). Google Scholar
  62. Eides, M. I., and V. A. Shelyuto, 2004, Phys. Rev. A 70, 022506. https://doi.org/10.1103/PhysRevA.70.022506, Google ScholarCrossref
  63. Eides, M. I., and V. A. Shelyuto, 2007, Can. J. Phys. 85, 509. https://doi.org/10.1139/P07-012, Google ScholarCrossref
  64. Eides, M. I., and V. A. Shelyuto, 2014, Phys. Rev. D 90, 113002. https://doi.org/10.1103/PhysRevD.90.113002, Google ScholarCrossref
  65. Eides, M. I., and V. A. Shelyuto, 2015, Phys. Rev. D 92, 013010. https://doi.org/10.1103/PhysRevD.92.013010, Google ScholarCrossref
  66. Erickson, G. W., 1977, J. Phys. Chem. Ref. Data 6, 831. https://doi.org/10.1063/1.555557, Google ScholarScitation
  67. Faustov, R., 1970, Phys. Lett. B 33, 422. https://doi.org/10.1016/0370-2693(70)90621-0, Google ScholarCrossref
  68. Fellmuth, B., J. Fischer, C. Gaiser, O. Jusko, T. Priruenrom, W. Sabuga, and T. Zandt, 2011, Metrologia 48, 382. https://doi.org/10.1088/0026-1394/48/5/020, Google ScholarCrossref
  69. Gaiser, C., and B. Fellmuth, 2012, Metrologia 49, L4. https://doi.org/10.1088/0026-1394/49/1/L02, Google ScholarCrossref
  70. Gaiser, C., T. Zandt, and B. Fellmuth, 2015, Metrologia 52, S217. https://doi.org/10.1088/0026-1394/52/5/S217, Google ScholarCrossref
  71. Gaiser, C., T. Zandt, B. Fellmuth, J. Fischer, O. Jusko, and W. Sabuga, 2013, Metrologia 50, L7. https://doi.org/10.1088/0026-1394/50/6/L7, Google ScholarCrossref
  72. Garbacz, P., K. Jackowski, W. Makulski, and R. E. Wasylishen, 2012, J. Phys. Chem. 116, 11896. https://doi.org/10.1021/jp309820v, Google ScholarCrossref
  73. Gasparian, A., 2014, EPJ Web Conf. 73, 07006. https://doi.org/10.1051/epjconf/20147307006, Google ScholarCrossref
  74. Gavioso, R. M., G. Benedetto, P. A. Giuliano Albo, D. Madonna Ripa, A. Merlone, C. Guianvarc’h, F. Moro, and R. Cuccaro, 2010, Metrologia 47, 387. https://doi.org/10.1088/0026-1394/47/4/005, Google ScholarCrossref
  75. Gavioso, R. M., D. Madonna Ripa, P. P. M. Steur, C. Gaiser, D. Truong, C. Guianvarc’h, P. Tarizzo, F. M. Stuart, and R. Dematteis, 2015, Metrologia 52, S274. https://doi.org/10.1088/0026-1394/52/5/S274, Google ScholarCrossref
  76. Glazov, D. A., and V. M. Shabaev, 2002, Phys. Lett. A 297, 408. https://doi.org/10.1016/S0375-9601(02)00021-X, Google ScholarCrossref
  77. Gnendiger, C., D. Stöckinger, and H. Stöckinger-Kim, 2013, Phys. Rev. D 88, 053005. https://doi.org/10.1103/PhysRevD.88.053005, Google ScholarCrossref
  78. Godun, R. M., P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, 2014, Phys. Rev. Lett. 113, 210801. https://doi.org/10.1103/PhysRevLett.113.210801, Google ScholarCrossref
  79. Goecke, T., C. S. Fischer, and R. Williams, 2013, Phys. Rev. D 87, 034013. https://doi.org/10.1103/PhysRevD.87.034013, Google ScholarCrossref
  80. Griffioen, K., C. Carlson, and S. Maddox, 2016, Phys. Rev. C 93, 065207. https://doi.org/10.1103/PhysRevC.93.065207, Google ScholarCrossref
  81. Grotch, H., 1970, Phys. Rev. Lett. 24, 39. https://doi.org/10.1103/PhysRevLett.24.39, Google ScholarCrossref
  82. Gundlach, J. H., and S. M. Merkowitz, 2000, Phys. Rev. Lett. 85, 2869. https://doi.org/10.1103/PhysRevLett.85.2869, Google ScholarCrossref
  83. Gundlach, J. H., and S. M. Merkowitz, 2002 (private communication). Google Scholar
  84. Hagiwara, K., R. Liao, A. D. Martin, D. Nomura, and T. Teubner, 2011, J. Phys. G 38, 085003. https://doi.org/10.1088/0954-3899/38/8/085003, Google ScholarCrossref
  85. Hagley, E. W., and F. M. Pipkin, 1994, Phys. Rev. Lett. 72, 1172. https://doi.org/10.1103/PhysRevLett.72.1172, Google ScholarCrossref
  86. Hanneke, D., S. Fogwell, and G. Gabrielse, 2008, Phys. Rev. Lett. 100, 120801. https://doi.org/10.1103/PhysRevLett.100.120801, Google ScholarCrossref
  87. Higinbotham, W. D., A. A. Kabir, V. Lin, D. Meekins, B. Norum, and B. Sawatzky, 2016, Phys. Rev. C 93, 055207. https://doi.org/10.1103/PhysRevC.93.055207, Google ScholarCrossref
  88. Horbatsch, M., and E. A. Hessels, 2016, Phys. Rev. C 93, 015204. https://doi.org/10.1103/PhysRevC.93.015204, Google ScholarCrossref
  89. Hu, Z.-K., J.-Q. Guo, and J. Luo, 2005, Phys. Rev. D 71, 127505. https://doi.org/10.1103/PhysRevD.71.127505, Google ScholarCrossref
  90. Ishida, A., 2015, J. Phys. Chem. Ref. Data 44, 031212. https://doi.org/10.1063/1.4921539, Google ScholarScitation
  91. Ivanov, V. G., S. G. Karshenboim, and R. N. Lee, 2009, Phys. Rev. A 79, 012512. https://doi.org/10.1103/PhysRevA.79.012512, Google ScholarCrossref
  92. Jackowski, K., 2015 (private communication). Google Scholar
  93. Jackowski, K., M. Jaszuński, and M. Wilczek, 2010, J. Phys. Chem. A 114, 2471. https://doi.org/10.1021/jp9096056, Google ScholarCrossref
  94. Janssen, T. J. B. M., J. M. Williams, N. E. Fletcher, R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin, and V. I. Fal’ko, 2012, Metrologia 49, 294. https://doi.org/10.1088/0026-1394/49/3/294, Google ScholarCrossref
  95. Jegerlehner, F., and A. Nyffeler, 2009, Phys. Rep. 477, 1. https://doi.org/10.1016/j.physrep.2009.04.003, Google ScholarCrossref
  96. Jegerlehner, F., and R. Szafron, 2011, Eur. Phys. J. C 71, 1632. https://doi.org/10.1140/epjc/s10052-011-1632-3, Google ScholarCrossref
  97. Jentschura, U. D., 2009, Phys. Rev. A 79, 044501. https://doi.org/10.1103/PhysRevA.79.044501, Google ScholarCrossref
  98. Jentschura, U. D., A. Czarnecki, K. Pachucki, and V. A. Yerokhin, 2006, Int. J. Mass Spectrom. 251, 102. https://doi.org/10.1016/j.ijms.2005.12.051, Google ScholarCrossref
  99. Jentschura, U. D., S. Kotochigova, E.-O. Le Bigot, P. J. Mohr, and B. N. Taylor, 2005, Phys. Rev. Lett. 95, 163003, http://pml.nist.gov/hdel. https://doi.org/10.1103/PhysRevLett.95.163003, Google ScholarCrossref
  100. Jentschura, U. D., A. Matveev, C. G. Parthey, J. Alnis, R. Pohl, T. Udem, N. Kolachevsky, and T. W. Hänsch, 2011, Phys. Rev. A 83, 042505. https://doi.org/10.1103/PhysRevA.83.042505, Google ScholarCrossref
  101. Karagioz, O. V., and V. P. Izmailov, 1996, Izmer. Tekh. 39, 3 0368-1025, Google Scholar
    [Karagioz, O. V.V. P. IzmailovMeas. Tech. 39, 979 (1996)]. https://doi.org/10.1007/BF02377461, Google ScholarCrossref
  102. Karshenboim, S. G., 2000, Phys. Lett. A 266, 380. https://doi.org/10.1016/S0375-9601(00)00041-4, Google ScholarCrossref
  103. Karshenboim, S. G., 2014, Phys. Rev. D 90, 053012. https://doi.org/10.1103/PhysRevD.90.053012, Google ScholarCrossref
  104. Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 1999, Phys. Scr. T80, 491. https://doi.org/10.1238/Physica.Topical.080a00491, Google ScholarCrossref
  105. Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2000, Zh. Eksp. Teor. Fiz. 117, 67 0044-4510, Google Scholar
    [Karshenboim, S. G.V. G. IvanovV. M. ShabaevJETP 90, 59 (2000)]. Google ScholarCrossref
  106. Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2001a, Can. J. Phys. 79, 81. https://doi.org/10.1139/p01-041, Google ScholarCrossref
  107. Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2001b, Zh. Eksp. Teor. Fiz. 120, 546 0044-4510, Google Scholar
    [Karshenboim, S. G.V. G. IvanovV. M. ShabaevJETP 93, 477 (2001)]. https://doi.org/10.1134/1.1410592, Google ScholarCrossref
  108. Karshenboim, S. G., E. Y. Korzinin, V. A. Shelyuoto, and V. G. Ivanov, 2015, J. Phys. Chem. Ref. Data 44, 031202. https://doi.org/10.1063/1.4921197, Google ScholarScitation
  109. Karshenboim, S. G., P. J. Mohr, and D. B. Newell, 2015, J. Phys. Chem. Ref. Data 44, 031101. https://doi.org/10.1063/1.4926575, Google ScholarScitation
  110. Karshenboim, S. G., V. A. Shelyuto, and A. I. Vainshtein, 2008, Phys. Rev. D 78, 065036. https://doi.org/10.1103/PhysRevD.78.065036, Google ScholarCrossref
  111. Kibble, B. P., I. A. Robinson, and J. H. Belliss, 1990, Metrologia 27, 173. https://doi.org/10.1088/0026-1394/27/4/002, Google ScholarCrossref
  112. Kleinevoß, U., 2002, “Bestimmung der Newtonschen Gravitationskonstanten G ,” Ph.D. thesis, University of Wuppertal. Google Scholar
  113. Kleinvoß, U., H. Meyer, H. Piel, and S. Hartmann, 2002 (private communication) (to be published). Google Scholar
  114. Köhler, F., S. Sturm, A. Kracke, G. Werth, W. Quint, and K. Blaum, 2015, J. Phys. B 48, 144032. https://doi.org/10.1088/0953-4075/48/14/144032, Google ScholarCrossref
  115. Korobov, V. I., L. Hilico, and J.-P. Karr, 2014, Phys. Rev. A 89, 032511. https://doi.org/10.1103/PhysRevA.89.032511, Google ScholarCrossref
  116. Kotochigova, S., 2006 (private communication). Google Scholar
  117. Kraus, E., K. E. Mesick, A. White, R. Gilman, and S. Strauch, 2014, Phys. Rev. C 90, 045206. https://doi.org/10.1103/PhysRevC.90.045206, Google ScholarCrossref
  118. Kuramoto, N., Y. Azuma, H. Inaba, F.-L. Hong, and K. Fujii, 2015, IEEE Trans. Instrum. Meas. 64, 1650. https://doi.org/10.1109/TIM.2015.2401212, Google ScholarCrossref
  119. Kuroda, K., 1995, Phys. Rev. Lett. 75, 2796. https://doi.org/10.1103/PhysRevLett.75.2796, Google ScholarCrossref
  120. Kurz, A., T. Liu, P. Marquard, and M. Steinhauser, 2014a, Nucl. Phys. B 879, 1. https://doi.org/10.1016/j.nuclphysb.2013.11.018, Google ScholarCrossref
  121. Kurz, A., T. Liu, P. Marquard, and M. Steinhauser, 2014b, Phys. Lett. B 734, 144. https://doi.org/10.1016/j.physletb.2014.05.043, Google ScholarCrossref
  122. Lan, S.-Y., P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, 2013, Science 339, 554. https://doi.org/10.1126/science.1230767, Google ScholarCrossref
  123. Lee, G., J. R. Arrington, and R. J. Hill, 2015, Phys. Rev. D 92, 013013. https://doi.org/10.1103/PhysRevD.92.013013, Google ScholarCrossref
  124. Lee, J.-Y., K. Marti, J. P. Severinghaus, K. Kawamura, H.-S. Yoo, J. B. Lee, and J. S. Kim, 2006, Geochim. Cosmochim. Acta 70, 4507. https://doi.org/10.1016/j.gca.2006.06.1563, Google ScholarCrossref
  125. Lee, R. N., A. I. Milstein, I. S. Terekhov, and S. G. Karshenboim, 2005, Phys. Rev. A 71, 052501. https://doi.org/10.1103/PhysRevA.71.052501, Google ScholarCrossref
  126. Lees, J. P., et al., 2012, Phys. Rev. D 86, 032013. https://doi.org/10.1103/PhysRevD.86.032013, Google ScholarCrossref
  127. Liard, J. O., C. A. Sanchez, B. M. Wood, A. D. Inglis, and R. J. Silliker, 2014, Metrologia 51, S32. https://doi.org/10.1088/0026-1394/51/2/S32, Google ScholarCrossref
  128. Lin, H., X. J. Feng, K. A. Gillis, M. R. Moldover, J. T. Zhang, J. P. Sun, and Y. Y. Duan, 2013, Metrologia 50, 417. https://doi.org/10.1088/0026-1394/50/5/417, Google ScholarCrossref
  129. Liu, J., D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, 2010, J. Chem. Phys. 132, 154301. https://doi.org/10.1063/1.3374426, Google ScholarScitation
  130. Liu, W., et al., 1999, Phys. Rev. Lett. 82, 711. https://doi.org/10.1103/PhysRevLett.82.711, Google ScholarCrossref
  131. Logashenko, I., et al., 2015, J. Phys. Chem. Ref. Data 44, 031211. https://doi.org/10.1063/1.4917553, Google ScholarScitation
  132. Lorenz, I. T., U.-G. Meißner, H. W. Hammer, and Y.-B. Dong, 2015, Phys. Rev. D 91, 014023. https://doi.org/10.1103/PhysRevD.91.014023, Google ScholarCrossref
  133. Lundeen, S. R., and F. M. Pipkin, 1986, Metrologia 22, 9. https://doi.org/10.1088/0026-1394/22/1/003, Google ScholarCrossref
  134. Luo, J., Q. Liu, L.-C. Tu, C.-G. Shao, L.-X. Liu, S.-Q. Yang, Q. Li, and Y.-T. Zhang, 2009, Phys. Rev. Lett. 102, 240801. https://doi.org/10.1103/PhysRevLett.102.240801, Google ScholarCrossref
  135. Luther, G. G., and W. R. Towler, 1982, Phys. Rev. Lett. 48, 121. https://doi.org/10.1103/PhysRevLett.48.121, Google ScholarCrossref
  136. Mana, G., et al., 2015, J. Phys. Chem. Ref. Data 44, 031209. https://doi.org/10.1063/1.4921240, Google ScholarScitation
  137. Mariam, F. G., 1981, “High Precision Measurement of the Muonium Ground State Hyperfine Interval and the Muon Magnetic Moment,” Ph.D. thesis, Yale University. Google Scholar
  138. Mariam, F. G., et al., 1982, Phys. Rev. Lett. 49, 993. https://doi.org/10.1103/PhysRevLett.49.993, Google ScholarCrossref
  139. Marsman, A., M. Horbatsch, and E. A. Hessels, 2015a, J. Phys. Chem. Ref. Data 44, 031207. https://doi.org/10.1063/1.4922796, Google ScholarScitation
  140. Marsman, A., M. Horbatsch, and E. A. Hessels, 2015b, Phys. Rev. A 91, 062506. https://doi.org/10.1103/PhysRevA.91.062506, Google ScholarCrossref
  141. Massa, E., C. P. Sasso, G. Mana, and C. Palmisano, 2015, J. Phys. Chem. Ref. Data 44, 031208. https://doi.org/10.1063/1.4917488, Google ScholarScitation
  142. Matveev, A., et al., 2013, Phys. Rev. Lett. 110, 230801. https://doi.org/10.1103/PhysRevLett.110.230801, Google ScholarCrossref
  143. Melnikov, K., and A. Vainshtein, 2004, Phys. Rev. D 70, 113006. https://doi.org/10.1103/PhysRevD.70.113006, Google ScholarCrossref
  144. Mibe, T., 2011, Nucl. Phys. B, Proc. Suppl. 218, 242. https://doi.org/10.1016/j.nuclphysbps.2011.06.039, Google ScholarCrossref
  145. Milton, M. J. T., R. Davis, and N. Fletcher, 2014, Metrologia 51, R21. https://doi.org/10.1088/0026-1394/51/3/R21, Google ScholarCrossref
  146. Miyazaki, A., Y. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, and T. Idehara, 2015, Prog. Theor. Exp. Phys. 2015, 011C01. https://doi.org/10.1093/ptep/ptu181, Google ScholarCrossref
  147. Mizushima, S., N. Kuramoto, K. Ueda, and K. Fujii, 2015, IEEE Trans. Instrum. Meas. 64, 1527. https://doi.org/10.1109/TIM.2015.2389351, Google ScholarCrossref
  148. Mohr, P. J., and B. N. Taylor, 2000, Rev. Mod. Phys. 72, 351. https://doi.org/10.1103/RevModPhys.72.351, Google ScholarCrossref
  149. Mohr, P. J., and B. N. Taylor, 2005, Rev. Mod. Phys. 77, 1. https://doi.org/10.1103/RevModPhys.77.1, Google ScholarCrossref
  150. Mohr, P. J., B. N. Taylor, and D. B. Newell, 2008a, Rev. Mod. Phys. 80, 633. https://doi.org/10.1103/RevModPhys.80.633, Google ScholarCrossref
  151. Mohr, P. J., B. N. Taylor, and D. B. Newell, 2008b, J. Phys. Chem. Ref. Data 37, 1187. https://doi.org/10.1063/1.2844785, Google ScholarScitation
  152. Mohr, P. J., B. N. Taylor, and D. B. Newell, 2012a, Rev. Mod. Phys. 84, 1527. https://doi.org/10.1103/RevModPhys.84.1527, Google ScholarCrossref
  153. Mohr, P. J., B. N. Taylor, and D. B. Newell, 2012b, J. Phys. Chem. Ref. Data 41, 043109. https://doi.org/10.1063/1.4724320, Google ScholarScitation
  154. Moldover, M., 2015 (private communication). Google Scholar
  155. Moldover, M. R., R. M. Gavioso, J. B. Mehl, L. Pitre, M. de Podesta, and J. T. Zhang, 2014, Metrologia 51, R1. https://doi.org/10.1088/0026-1394/51/1/R1, Google ScholarCrossref
  156. Moldover, M. R., R. M. Gavioso, and D. B. Newell, 2015, Metrologia 52, S376. https://doi.org/10.1088/0026-1394/52/5/S376, Google ScholarCrossref
  157. Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, 1988, J. Res. Natl. Bur. Stand. 93, 85. https://doi.org/10.6028/jres.093.010, Google ScholarCrossref
  158. Mondéjar, J., J. H. Piclum, and A. Czarnecki, 2010, Phys. Rev. A 81, 062511. https://doi.org/10.1103/PhysRevA.81.062511, Google ScholarCrossref
  159. Mooser, A., H. Kracke, K. Blaum, S. A. Bräuninger, K. Franke, C. Leiteritz, W. Quint, C. C. Rodegheri, S. Ulmer, and J. Walz, 2013, Phys. Rev. Lett. 110, 140405. https://doi.org/10.1103/PhysRevLett.110.140405, Google ScholarCrossref
  160. Mooser, A., S. Ulmer, K. Blaum, K. Franke, H. Kracke, C. Leiteritz, W. Quint, C. C. Rodegheri, C. Smorra, and J. Walz, 2014, Nature (London) 509, 596. https://doi.org/10.1038/nature13388, Google ScholarCrossref
  161. Mooser, A., et al., 2013, Phys. Lett. B 723, 78. https://doi.org/10.1016/j.physletb.2013.05.012, Google ScholarCrossref
  162. Müller, H., 2015 (private communication). Google Scholar
  163. Myers, E., 2015 (private communication). Google Scholar
  164. Myers, E. G., A. Wagner, H. Kracke, and B. A. Wesson, 2015, Phys. Rev. Lett. 114, 013003. https://doi.org/10.1103/PhysRevLett.114.013003, Google ScholarCrossref
  165. Nakamura, K., et al., 2010, J. Phys. G 37, 075021. https://doi.org/10.1088/0954-3899/37/7A/075021, Google ScholarCrossref
  166. Narukawa, T., A. Hioki, N. Kuramoto, and K. Fujii, 2014, Metrologia 51, 161. https://doi.org/10.1088/0026-1394/51/3/161, Google ScholarCrossref
  167. Neronov, Y. I., 2015 (private communication). Google Scholar
  168. Neronov, Y. I., and V. S. Aleksandrov, 2011, Pis’ma Zh. Eksp. Teor. Fiz. 94, 452 , Google Scholar
    [Neronov, Y. I.V. S. AleksandrovJETP Lett. 94, 418 (2011)]. https://doi.org/10.1134/S002136401118010X, Google ScholarCrossref
  169. Neronov, Y. I., and N. N. Seregin, 2012, Zh. Eksp. Teor. Fiz. 115, 777 , Google Scholar
    [Neronov, Y. I.N. N. SereginJETP 142, 883 (2012)]. Google Scholar
  170. Neronov, Y. I., and N. N. Seregin, 2014, Metrologia 51, 54. https://doi.org/10.1088/0026-1394/51/1/54, Google ScholarCrossref
  171. Newman, R., M. Bantel, E. Berg, and W. Cross, 2014, Phil. Trans. R. Soc. A 372, 20140025. https://doi.org/10.1098/rsta.2014.0025, Google ScholarCrossref
  172. Newton, G., D. A. Andrews, and P. J. Unsworth, 1979, Phil. Trans. R. Soc. A 290, 373. https://doi.org/10.1098/rsta.1979.0004, Google ScholarCrossref
  173. Nomura, D., and T. Teubner, 2013, Nucl. Phys. B 867, 236. https://doi.org/10.1016/j.nuclphysb.2012.10.001, Google ScholarCrossref
  174. Nyffeler, A., 2009, Phys. Rev. D 79, 073012. https://doi.org/10.1103/PhysRevD.79.073012, Google ScholarCrossref
  175. Nyffeler, A., 2014, Int. J. Mod. Phys. Conf. Ser. 35, 1460456. https://doi.org/10.1142/S2010194514604566, Google ScholarCrossref
  176. Olive, K. A., et al. (Particle Data Group), 2014, Chin. Phys. C 38, 090001. https://doi.org/10.1088/1674-1137/38/9/090001, Google ScholarCrossref
  177. Pachucki, K., A. Czarnecki, U. D. Jentschura, and V. A. Yerokhin, 2005, Phys. Rev. A 72, 022108. https://doi.org/10.1103/PhysRevA.72.022108, Google ScholarCrossref
  178. Pachucki, K., U. D. Jentschura, and V. A. Yerokhin, 2004, Phys. Rev. Lett. 93, 150401; https://doi.org/10.1103/PhysRevLett.93.150401, Google ScholarCrossref
    Pachucki, K.U. D. JentschuraV. A. YerokhinPhys. Rev. Lett.94, 229902(E) (2005). https://doi.org/10.1103/PhysRevLett.94.229902, , Google ScholarCrossref
  179. Parks, H. V., and J. E. Faller, 2010, Phys. Rev. Lett. 105, 110801. https://doi.org/10.1103/PhysRevLett.105.110801, Google ScholarCrossref
  180. Parks, H. V., and J. E. Faller, 2014, Phil. Trans. R. Soc. A 372, 20140024. https://doi.org/10.1098/rsta.2014.0024, Google ScholarCrossref
  181. Parthey, C. G., A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, 2010, Phys. Rev. Lett. 104, 233001. https://doi.org/10.1103/PhysRevLett.104.233001, Google ScholarCrossref
  182. Parthey, C. G., et al., 2011, Phys. Rev. Lett. 107, 203001. https://doi.org/10.1103/PhysRevLett.107.203001, Google ScholarCrossref
  183. Piszczatowski, K., M. Puchalski, J. Komasa, B. Jeziorski, and K. Szalewicz, 2015, Phys. Rev. Lett. 114, 173004. https://doi.org/10.1103/PhysRevLett.114.173004, Google ScholarCrossref
  184. Pitre, L., 2015 (private communication). Google Scholar
  185. Pitre, L., C. Guianvarc’h, F. Sparasci, A. Guillou, D. Truong, Y. Hermier, and M. E. Himbert, 2009, C.R. Phys. 10, 835. https://doi.org/10.1016/j.crhy.2009.11.001, Google ScholarCrossref
  186. Pitre, L., L. Risegari, F. Sparasci, M. D. Plimmer, M. E. Himbert, and P. A. Giuliano Albo, 2015, Metrologia 52, S263. https://doi.org/10.1088/0026-1394/52/5/S263, Google ScholarCrossref
  187. Pitre, L., F. Sparasci, D. Truong, A. Guillou, L. Risegari, and M. E. Himbert, 2011, Int. J. Thermophys. 32, 1825. https://doi.org/10.1007/s10765-011-1023-x, Google ScholarCrossref
  188. Pohl, R., et al., 2010, Nature (London) 466, 213. https://doi.org/10.1038/nature09250, Google ScholarCrossref
  189. Prades, J., E. de Rafael, and A. Vainshtein, 2010, in Lepton Dipole Moments, edited by B. L. Roberts and W. J. Marciano, Advanced Series on Directions in High Energy Physics, Vol. 20 (World Scientific, Singapore), Chap. 9, pp. 303–317. Google Scholar
  190. Pramann, A., K.-S. Lee, J. Noordmann, and O. Rienitz, 2015, Metrologia 52, 800. https://doi.org/10.1088/0026-1394/52/6/800, Google ScholarCrossref
  191. Prevedelli, M., L. Cacciapuoti, G. Rosi, F. Sorrentino, and G. M. Tino, 2014, Phil. Trans. R. Soc. A 372, 20140030. https://doi.org/10.1098/rsta.2014.0030, Google ScholarCrossref
  192. Puchalski, M., J. Komasa, and K. Pachucki, 2015, Phys. Rev. A 92, 020501. https://doi.org/10.1103/PhysRevA.92.020501, Google ScholarCrossref
  193. Qu, J., S. P. Benz, A. Pollarolo, H. Rogalla, W. L. Tew, R. White, and K. Zhou, 2015, Metrologia 52, S242. https://doi.org/10.1088/0026-1394/52/5/S242, Google ScholarCrossref
  194. Quinn, T., H. Parks, C. Speake, and R. Davis, 2013, Phys. Rev. Lett. 111, 101102; https://doi.org/10.1103/PhysRevLett.111.101102, Google ScholarCrossref
    Quinn, T.H. ParksC. SpeakeR. DavisPhys. Rev. Lett.113, 039901(E) (2014). https://doi.org/10.1103/PhysRevLett.113.039901, , Google ScholarCrossref
  195. Quinn, T., C. Speake, H. Parks, and R. Davis, 2014, Phil. Trans. R. Soc. A 372, 20140032. https://doi.org/10.1098/rsta.2014.0032, Google ScholarCrossref
  196. Quinn, T. J., 1989, Metrologia 26, 69. https://doi.org/10.1088/0026-1394/26/1/006, Google ScholarCrossref
  197. Quinn, T. J., 2001, Metrologia 38, 89. https://doi.org/10.1088/0026-1394/38/1/11, Google ScholarCrossref
  198. Quinn, T. J., C. C. Speake, S. J. Richman, R. S. Davis, and A. Picard, 2001, Phys. Rev. Lett. 87, 111101. https://doi.org/10.1103/PhysRevLett.87.111101, Google ScholarCrossref
  199. Ribeiro-Palau, R., et al., 2015, Nat. Nanotechnol. 10, 965. https://doi.org/10.1038/nnano.2015.192, Google ScholarCrossref
  200. Robinson, I. A., 2012, Metrologia 49, 113. https://doi.org/10.1088/0026-1394/49/1/016, Google ScholarCrossref
  201. Rodegheri, C. C., K. Blaum, H. Kracke, S. Kreim, A. Mooser, W. Quint, S. Ulmer, and J. Walz, 2012, New J. Phys. 14, 063011. https://doi.org/10.1088/1367-2630/14/6/063011, Google ScholarCrossref
  202. Rosi, G., F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, 2014, Nature (London) 510, 518. https://doi.org/10.1038/nature13433, Google ScholarCrossref
  203. Rothleitner, C., T. M. Niebauer, and O. Francis, 2014, Metrologia 51, L9. https://doi.org/10.1088/0026-1394/51/3/L9, Google ScholarCrossref
  204. Rudziński, A., M. Puchalski, and K. Pachucki, 2009, J. Chem. Phys. 130, 244102. https://doi.org/10.1063/1.3159674, Google ScholarScitation
  205. Sanchez, C. A., and B. M. Wood, 2014, Metrologia 51, S42. https://doi.org/10.1088/0026-1394/51/2/S42, Google ScholarCrossref
  206. Sanchez, C. A., B. M. Wood, R. G. Green, J. O. Liard, and D. Inglis, 2014, Metrologia 51, S5. https://doi.org/10.1088/0026-1394/51/2/S5, Google ScholarCrossref
  207. Sanchez, C. A., B. M. Wood, R. G. Green, J. O. Liard, and D. Inglis, 2015, Metrologia 52, L23. https://doi.org/10.1088/0026-1394/52/4/L23, Google ScholarCrossref
  208. Sanchez, C. A., B. M. Wood, D. Inglis, and I. A. Robinson, 2013, IEEE Trans. Instrum. Meas. 62, 1506. https://doi.org/10.1109/TIM.2012.2225957, Google ScholarCrossref
  209. Sano, Y., H. Wakita, and C.-W. Huang, 1986, Nature (London) 323, 55. https://doi.org/10.1038/323055a0, Google ScholarCrossref
  210. Sapirstein, J. R., and D. R. Yennie, 1990, in Quantum Electrodynamics, edited by Kinoshita T. (World Scientific, Singapore), Chap. 12, pp. 560–672. Google ScholarCrossref
  211. Schabinger, B., S. Sturm, A. Wagner, J. Alonso, W. Quint, G. Werth, and K. Blaum, 2012, Eur. Phys. J. D 66, 71. https://doi.org/10.1140/epjd/e2012-20610-y, Google ScholarCrossref
  212. Scherer, H., and B. Camarota, 2012, Meas. Sci. Technol. 23, 124010. https://doi.org/10.1088/0957-0233/23/12/124010, Google ScholarCrossref
  213. Schlamminger, S., D. Haddard, F. Seifert, L. S. Chao, D. B. Newell, R. Liu, R. L. Steiner, and J. R. Pratt, 2014, Metrologia 51, S15. https://doi.org/10.1088/0026-1394/51/2/S15, Google ScholarCrossref
  214. Schlamminger, S., E. Holzschuh, W. Kündig, F. Nolting, R. E. Pixley, J. Schurr, and U. Straumann, 2006, Phys. Rev. D 74, 082001. https://doi.org/10.1103/PhysRevD.74.082001, Google ScholarCrossref
  215. Schlamminger, S., R. L. Steiner, D. Haddad, D. B. Newell, F. Seifert, L. S. Chao, R. Liu, E. R. Williams, and J. R. Pratt, 2015, Metrologia 52, L5. https://doi.org/10.1088/0026-1394/52/2/L5, Google ScholarCrossref
  216. Schmidt, J. W., R. M. Gavioso, E. F. May, and M. R. Moldover, 2007, Phys. Rev. Lett. 98, 254504. https://doi.org/10.1103/PhysRevLett.98.254504, Google ScholarCrossref
  217. Schwob, C., L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, and A. Clairon, 1999, Phys. Rev. Lett. 82, 4960; https://doi.org/10.1103/PhysRevLett.82.4960, Google ScholarCrossref
    Schwob, C.L. JozefowskiB. de BeauvoirL. HilicoF. NezL. JulienF. BirabenO. AcefA. ClaironPhys. Rev. Lett.86, 4193(E) (2001). https://doi.org/10.1103/PhysRevLett.86.4193, , Google ScholarCrossref
  218. Shabaev, V. M., and V. A. Yerokhin, 2002, Phys. Rev. Lett. 88, 091801. https://doi.org/10.1103/PhysRevLett.88.091801, Google ScholarCrossref
  219. Sick, I., 2008, in Precision Physics of Simple Atoms and Molecules, edited by Karshenboim S. G., Lecture Notes in Physics, Vol. 745 (Springer, Berlin/Heidelberg), pp. 57–77. Google Scholar
  220. Sick, I., 2015, J. Phys. Chem. Ref. Data 44, 031213. https://doi.org/10.1063/1.4921830, Google ScholarScitation
  221. Sprecher, D., J. Liu, C. Jungen, W. Ubachs, and F. Merkt, 2010, J. Chem. Phys. 133, 111102. https://doi.org/10.1063/1.3483462, Google ScholarScitation
  222. Steele, A. G., J. Meija, C. A. Sanchez, L. Yang, B. M. Wood, R. E. Sturgeon, Z. Mester, and A. D. Inglis, 2012, Metrologia 49, L8. https://doi.org/10.1088/0026-1394/49/1/L03, Google ScholarCrossref
  223. Steiner, R. L., E. R. Williams, R. Liu, and D. B. Newell, 2007, IEEE Trans. Instrum. Meas. 56, 592. https://doi.org/10.1109/TIM.2007.890590, Google ScholarCrossref
  224. Stock, M., P. Barat, R. S. Davis, A. Picard, and M. J. T. Milton, 2015, Metrologia 52, 310. https://doi.org/10.1088/0026-1394/52/2/310, Google ScholarCrossref
  225. Streubel, S., T. Eronen, M. Höcker, J. Ketter, M. Schuh, R. S. Van Dyck, Jr., and K. Blaum, 2014, Appl. Phys. B 114, 137. https://doi.org/10.1007/s00340-013-5669-x, Google ScholarCrossref
  226. Sturm, S., 2015 (private communication). Google Scholar
  227. Sturm, S., K. Blaum, B. Schabinger, A. Wagner, W. Quint, and G. Werth, 2010, J. Phys. B 43, 074016. https://doi.org/10.1088/0953-4075/43/7/074016, Google ScholarCrossref
  228. Sturm, S., F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, 2014, Nature (London) 506, 467. https://doi.org/10.1038/nature13026, Google ScholarCrossref
  229. Sturm, S., F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, 2015 (private communication). Google Scholar
  230. Sturm, S., A. Wagner, M. Kretzschmar, W. Quint, G. Werth, and K. Blaum, 2013, Phys. Rev. A 87, 030501. https://doi.org/10.1103/PhysRevA.87.030501, Google ScholarCrossref
  231. Sturm, S., A. Wagner, B. Schabinger, and K. Blaum, 2011, Phys. Rev. Lett. 107, 143003. https://doi.org/10.1103/PhysRevLett.107.143003, Google ScholarCrossref
  232. Sturm, S., A. Wagner, B. Schabinger, J. Zatorski, Z. Harman, W. Quint, G. Werth, C. H. Keitel, and K. Blaum, 2011, Phys. Rev. Lett. 107, 023002. https://doi.org/10.1103/PhysRevLett.107.023002, Google ScholarCrossref
  233. Sutton, G., R. Underwood, L. Pitre, M. de Podesta, and S. Valkiers, 2010, Int. J. Thermophys. 31, 1310. https://doi.org/10.1007/s10765-010-0722-z, Google ScholarCrossref
  234. Taylor, B. N., and P. J. Mohr, 2001, IEEE Trans. Instrum. Meas. 50, 563. https://doi.org/10.1109/19.918192, Google ScholarCrossref
  235. Thomas, M., P. Espel, D. Ziane, P. Pinot, P. Juncar, F. Pereira Dos Santos, S. Merlet, F. Piquemal, and G. Genevès, 2015, Metrologia 52, 433. https://doi.org/10.1088/0026-1394/52/2/433, Google ScholarCrossref
  236. Tu, L.-C., Q. Li, Q.-L. Wang, C.-G. Shao, S.-Q. Yang, L.-X. Liu, Q. Liu, and J. Luo, 2010, Phys. Rev. D 82, 022001. https://doi.org/10.1103/PhysRevD.82.022001, Google ScholarCrossref
  237. Udem, T., 2014 (private communication). Google Scholar
  238. Ulmar, S., K. Blaum, H. Kracke, A. Mooser, W. Quint, C. C. Rodegheri, and J. Walz, 2013, Nucl. Instrum. Methods Phys. Res., Sect. A 705, 55. https://doi.org/10.1016/j.nima.2012.12.071, Google ScholarCrossref
  239. Ulmer, S., K. Blaum, H. Kracke, A. Mooser, W. Quint, C. C. Rodegheri, and J. Walz, 2011, Phys. Rev. Lett. 107, 103002. https://doi.org/10.1103/PhysRevLett.107.103002, Google ScholarCrossref
  240. Ulmer, S., C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, and J. Walz, 2011, Phys. Rev. Lett. 106, 253001. https://doi.org/10.1103/PhysRevLett.106.253001, Google ScholarCrossref
  241. Valkiers, S., D. Vendelbo, M. Berglund, and M. de Podesta, 2010, Int. J. Mass Spectrom. 291, 41. https://doi.org/10.1016/j.ijms.2010.01.004, Google ScholarCrossref
  242. Van Dyck, R., Jr., 2015 (private communication). Google Scholar
  243. Van Dyck, R. S., Jr., D. B. Pinegar, S. V. Liew, and S. L. Zafonte, 2006, Int. J. Mass Spectrom. 251, 231. https://doi.org/10.1016/j.ijms.2006.01.038, Google ScholarCrossref
  244. Van Dyck, R. S., Jr., P. B. Schwinberg, and H. G. Dehmelt, 1987, Phys. Rev. Lett. 59, 26. https://doi.org/10.1103/PhysRevLett.59.26, Google ScholarCrossref
  245. Wang, M., G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, 2012, Chin. Phys. C 36, 1603. https://doi.org/10.1088/1674-1137/36/12/003, Google ScholarCrossref
  246. Waseda, A., H. Fujimoto, X. W. Zhang, N. Kuramoto, and K. Fujii, 2015, IEEE Trans. Instrum. Meas. 64, 1692. https://doi.org/10.1109/TIM.2014.2383091, Google ScholarCrossref
  247. Weitz, M., A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann, K. Pachucki, T. W. Hänsch, L. Julien, and F. Biraben, 1995, Phys. Rev. A 52, 2664. https://doi.org/10.1103/PhysRevA.52.2664, Google ScholarCrossref
  248. Wicht, A., J. M. Hensley, E. Sarajlic, and S. Chu, 2002, Phys. Scr. T102, 82. https://doi.org/10.1238/Physica.Topical.102a00082, Google ScholarCrossref
  249. Williams, E. R., R. L. Steiner, D. B. Newell, and P. T. Olsen, 1998, Phys. Rev. Lett. 81, 2404. https://doi.org/10.1103/PhysRevLett.81.2404, Google ScholarCrossref
  250. Wood, B., 2013 (private communication). Google Scholar
  251. Xu, J., et al., 2016, Metrologia 53, 86. https://doi.org/10.1088/0026-1394/53/1/86, Google ScholarCrossref
  252. Yang, I., L. Pitre, M. R. Moldover, J. Zhang, X. Feng, and J. S. Kim, 2015, Metrologia 52, S394. https://doi.org/10.1088/0026-1394/52/5/S394, Google ScholarCrossref
  253. Yang, L., Z. Mester, R. E. Sturgeon, and J. Meija, 2012, Anal. Chem. 84, 2321. https://doi.org/10.1021/ac203006j, Google ScholarCrossref
  254. Yerokhin, V. A., A. N. Artemyev, V. M. Shabaev, and G. Plunien, 2005, Phys. Rev. A 72, 052510. https://doi.org/10.1103/PhysRevA.72.052510, Google ScholarCrossref
  255. Yerokhin, V. A., and Z. Harman, 2013, Phys. Rev. A 88, 042502. https://doi.org/10.1103/PhysRevA.88.042502, Google ScholarCrossref
  256. Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2002, Phys. Rev. Lett. 89, 143001. https://doi.org/10.1103/PhysRevLett.89.143001, Google ScholarCrossref
  257. Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2004, Phys. Rev. A 69, 052503. https://doi.org/10.1103/PhysRevA.69.052503, Google ScholarCrossref
  258. Yerokhin, V. A., and U. D. Jentschura, 2008, Phys. Rev. Lett. 100, 163001. https://doi.org/10.1103/PhysRevLett.100.163001, Google ScholarCrossref
  259. Yerokhin, V. A., and U. D. Jentschura, 2010, Phys. Rev. A 81, 012502. https://doi.org/10.1103/PhysRevA.81.012502, Google ScholarCrossref
  260. Zafonte, S. L., and R. S. Van Dyck, Jr., 2015, Metrologia 52, 280. https://doi.org/10.1088/0026-1394/52/2/280, Google ScholarCrossref
  261. Zhang, J. T., H. Lin, X. J. Feng, J. P. Sun, K. A. Gillis, M. R. Moldover, and Y. Y. Duan, 2011, Int. J. Thermophys. 32, 1297. https://doi.org/10.1007/s10765-011-1001-3, Google ScholarCrossref
  262. Zhang, L., Y. Azuma, A. Kurokawa, N. Kuramoto, and K. Fujii, 2015, IEEE Trans. Instrum. Meas. 64, 1509. https://doi.org/10.1109/TIM.2015.2389352, Google ScholarCrossref
  263. © 2016 AIP Publishing LLC for the National Institute of Standards and Technology.