No Access Submitted: 04 January 2016 Accepted: 14 April 2016 Published Online: 28 April 2016
Appl. Phys. Lett. 108, 172604 (2016); https://doi.org/10.1063/1.4948352
more...View Affiliations
View Contributors
  • J. Gramich
  • A. Baumgartner
  • C. Schönenberger
We report thermally activated transport resonances for biases below the superconducting energy gap in a carbon nanotube quantum dot (QD) device with a superconducting Pb and a normal metal contact. These resonances are due to the superconductor's finite quasi-particle population at elevated temperatures and can only be observed when the QD life-time broadening is considerably smaller than the gap. This condition is fulfilled in our QD devices with optimized Pd/Pb/In multi-layer contacts, which result in reproducibly large and “clean” superconducting transport gaps with a strong conductance suppression for subgap biases. We show that these gaps close monotonically with increasing magnetic field and temperature. The accurate description of the subgap resonances by a simple resonant tunneling model illustrates the ideal characteristics of the reported Pb contacts and gives an alternative access to the tunnel coupling strengths in a QD.
This work was financially supported by the Swiss National Science Foundation (SNF), the Swiss Nanoscience Institute (SNI), the Swiss NCCR QSIT, the ERC Project QUEST, and the EU FP7 Project SE2ND.
  1. 1. M. R. Gräber, T. Nussbaumer, W. Belzig, and C. Schönenberger, Nanotechnology 15, S479 (2004). https://doi.org/10.1088/0957-4484/15/7/056, Google ScholarCrossref, ISI
  2. 2. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012). https://doi.org/10.1126/science.1222360, Google ScholarCrossref, ISI
  3. 3. S. Das Sarma, M. Freedman, and C. Nayak, NPJ Quantum Inf. 1, 15001 (2015). https://doi.org/10.1038/npjqi.2015.1, Google ScholarCrossref
  4. 4. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001). https://doi.org/10.1103/PhysRevB.63.165314, Google ScholarCrossref, ISI
  5. 5. L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger, Nature 461, 960 (2009). https://doi.org/10.1038/nature08432, Google ScholarCrossref
  6. 6. L. G. Herrmann, F. Portier, P. Roche, A. Levy Yeyati, T. Kontos, and C. Strunk, Phys. Rev. Lett. 104, 026801 (2010). https://doi.org/10.1103/PhysRevLett.104.026801, Google ScholarCrossref, ISI
  7. 7. J. Schindele, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 109, 157002 (2012). https://doi.org/10.1103/PhysRevLett.109.157002, Google ScholarCrossref, ISI
  8. 8. A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman, Nat. Commun. 3, 1165 (2012). https://doi.org/10.1038/ncomms2169, Google ScholarCrossref, ISI
  9. 9. J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 115, 216801 (2015). https://doi.org/10.1103/PhysRevLett.115.216801, Google ScholarCrossref
  10. 10. J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati, and P. Joyez, Nat. Phys. 6, 965 (2010). https://doi.org/10.1038/nphys1811, Google ScholarCrossref
  11. 11. T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo, P. M. Goldbart, and N. Mason, Nat. Phys. 7, 386 (2011). https://doi.org/10.1038/nphys1911, Google ScholarCrossref
  12. 12. E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and S. De Franceschi, Nat. Nanotechnol. 9, 79 (2014). https://doi.org/10.1038/nnano.2013.267, Google ScholarCrossref, ISI
  13. 13. J. Schindele, A. Baumgartner, R. Maurand, M. Weiss, and C. Schönenberger, Phys. Rev. B 89, 045422 (2014). https://doi.org/10.1103/PhysRevB.89.045422, Google ScholarCrossref, ISI
  14. 14. L. Bretheau, Ç. Ö. Girit, H. Pothier, D. Esteve, and C. Urbina, Nature 499, 312 (2013). https://doi.org/10.1038/nature12315, Google ScholarCrossref
  15. 15. C. Janvier, L. Tosi, L. Bretheau, Ç. Ö. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier, and C. Urbina, Science 349, 1199 (2015). https://doi.org/10.1126/science.aab2179, Google ScholarCrossref
  16. 16. M. Gaass, S. Pfaller, T. Geiger, A. Donarini, M. Grifoni, A. K. Hüttel, and C. Strunk, Phys. Rev. B 89, 241405 (2014). https://doi.org/10.1103/PhysRevB.89.241405, Google ScholarCrossref
  17. 17. S. Ratz, A. Donarini, D. Steininger, T. Geiger, A. Kumar, A. K. Hüttel, C. Strunk, and M. Grifoni, New J. Phys. 16, 123040 (2014). https://doi.org/10.1088/1367-2630/16/12/123040, Google ScholarCrossref
  18. 18. A. P. Higginbotham, S. M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygård, K. Flensberg, and C. M. Marcus, Nat. Phys. 11, 1017 (2015). https://doi.org/10.1038/nphys3461, Google ScholarCrossref
  19. 19. W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J. Nygård, and C. M. Marcus, Nat. Nanotechnol. 10, 232 (2015). https://doi.org/10.1038/nnano.2014.306, Google ScholarCrossref, ISI
  20. 20. M. Taupin, P. Krogstrup, H. Q. Nguyen, E. Mannila, S. M. Albrecht, J. Nygård, C. M. Marcus, and J. P. Pekola, e-print arXiv:1601.01149. Google Scholar
  21. 21. K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske, T. S. Jespersen, J. Nygård, K. Flensberg, and P. E. Lindelof, Phys. Rev. B 79, 134518 (2009). https://doi.org/10.1103/PhysRevB.79.134518, Google ScholarCrossref
  22. 22. G. Fülöp, F. Domínguez, S. d'Hollosy, A. Baumgartner, P. Makk, M. H. Madsen, V. A. Guzenko, J. Nygård, C. Schönenberger, A. Levy Yeyati, and S. Csonka, Phys. Rev. Lett. 115, 227003 (2015). https://doi.org/10.1103/PhysRevLett.115.227003, Google ScholarCrossref
  23. 23. C. P. Poole, Handbook of Superconductivity, edited by C. P. Poole ( Academic Press, San Diego, CA, 2000). Google ScholarCrossref
  24. 24. Y.-F. Chen, T. Dirks, G. Al-Zoubi, N. O. Birge, and N. Mason, Phys. Rev. Lett. 102, 036804 (2009). https://doi.org/10.1103/PhysRevLett.102.036804, Google ScholarCrossref
  25. 25. N. Bronn and N. Mason, Phys. Rev. B 88, 161409 (2013). https://doi.org/10.1103/PhysRevB.88.161409, Google ScholarCrossref
  26. 26. T. Dirks, Y.-F. Chen, N. O. Birge, and N. Mason, Appl. Phys. Lett. 95, 192103 (2009). https://doi.org/10.1063/1.3253705, Google ScholarScitation, ISI
  27. 27. I. V. Borzenets, Y. Shimazaki, G. F. Jones, M. F. Craciun, S. Russo, Y. Yamamoto, and S. Tarucha, Sci. Rep. 6, 23051 (2016). https://doi.org/10.1038/srep23051, Google ScholarCrossref
  28. 28. C. B. Whan and T. P. Orlando, Phys. Rev. B 54, R5255 (1996). https://doi.org/10.1103/PhysRevB.54.R5255, Google ScholarCrossref
  29. 29. S. Pfaller, A. Donarini, and M. Grifoni, Phys. Rev. B 87, 155439 (2013). https://doi.org/10.1103/PhysRevB.87.155439, Google ScholarCrossref
  30. 30. S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. 136, A1500 (1964). https://doi.org/10.1103/PhysRev.136.A1500, Google ScholarCrossref, ISI
  31. 31. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater. 22, 4014 (2010). https://doi.org/10.1002/adma.201000618, Google ScholarCrossref
  32. 32. J. Samm, J. Gramich, A. Baumgartner, M. Weiss, and C. Schönenberger, J. Appl. Phys. 115, 174309 (2014). https://doi.org/10.1063/1.4874919, Google ScholarScitation
  33. 33. J. M. Eldridge, Y. J. Van der Meulen, and D. W. Dong, Thin Solid Films 12, 447 (1972). https://doi.org/10.1016/0040-6090(72)90111-3, Google ScholarCrossref
  34. 34. J. Kim, V. Chua, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, Nat. Phys. 8, 464 (2012). https://doi.org/10.1038/nphys2287, Google ScholarCrossref
  35. 35. L. Serrier-Garcia, J. C. Cuevas, T. Cren, C. Brun, V. Cherkez, F. Debontridder, D. Fokin, F. S. Bergeret, and D. Roditchev, Phys. Rev. Lett. 110, 157003 (2013). https://doi.org/10.1103/PhysRevLett.110.157003, Google ScholarCrossref
  36. 36. A. Levy Yeyati, J. C. Cuevas, A. López-Dávalos, and A. Martín-Rodero, Phys. Rev. B 55, R6137 (1997). https://doi.org/10.1103/PhysRevB.55.R6137, Google ScholarCrossref, ISI
  37. 37. D. J. Thouless, Phys. Rev. 117, 1256 (1960). https://doi.org/10.1103/PhysRev.117.1256, Google ScholarCrossref
  38. 38. D. H. Douglass, Jr. and L. M. Falicov, “ The superconducting energy gap,” in Progress in Low Temperature Physics, edited by C. Gorter ( Elsevier, 1964), Vol. 4, pp. 97–193. Google Scholar
  39. 39. R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Solid State Commun. 4, 59 (1966). https://doi.org/10.1016/0038-1098(66)90106-2, Google ScholarCrossref
  40. 40.We use the Drude model to estimate the mean free path of our Pb strips from the measured low-temperature Pb strip resistivity. Assuming the bulk literature values of Pb2323. C. P. Poole, Handbook of Superconductivity, edited by C. P. Poole ( Academic Press, San Diego, CA, 2000). for the coherence length ξ ∼ 90 nm and the penetration depth λ ∼ 40 nm in the clean limit (l = ), we estimate the coherence length and penetration depth of our Pb strips using the interpolation formulae suitable for the regime lξ,ξ(l)ξ(1+ξ/l)0.5 and λ(l)λ(1+ξ/l)0.5,4242. M. Tinkham, Introduction to Superconductivity, 2nd ed. ( Dover, 2004). respectively.
  41. 41.We use the equations Δ(α)=Δ̃(α)[1(α/Δ̃(α))2/3]3/2 and ln(Δ̃(α)/Δ0)=π/4·α/Δ̃(α) of Ref. 3030. S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. 136, A1500 (1964). https://doi.org/10.1103/PhysRev.136.A1500, valid in the dirty limit lξ and for αΔ̃(α), to calculate the dependence of the visible transport gap (the spectral quasiparticle gap) Δ as a function of B. Here, Δ̃ is the order parameter, Δ0 the experimentally determined transport gap at B = 0 and at base temperature, and α=0.5Δ0(B/Bc)n the pair-breaking parameter with the exponent n.30,4230. S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. 136, A1500 (1964). https://doi.org/10.1103/PhysRev.136.A150042. M. Tinkham, Introduction to Superconductivity, 2nd ed. ( Dover, 2004). Note that we use Bc as adjustable parameter so that Δ(B) vanishes at the experimentally determined values.
  42. 42. M. Tinkham, Introduction to Superconductivity, 2nd ed. ( Dover, 2004). Google Scholar
  43. 43.We ascribe the small central subgap conductance peak between TL and TR to the thermally broadened DOS in the S contact, coinciding with μQD=μN. The analysis at VSD = ±1 mV shows that this finite subgap conductance at elevated temperatures has no influence on our analysis.
  44. 44. We carefully controlled that no structures are lost or created in the averaging procedure. Google Scholar
  45. 45.In the studied temperature range kTΔkTc, the closing of the transport gap for TTc plays already a significant role.
  1. © 2016 Author(s). Published by AIP Publishing.