No Access Submitted: 19 August 2015 Accepted: 28 February 2016 Published Online: 18 March 2016
Review of Scientific Instruments 87, 033903 (2016); https://doi.org/10.1063/1.4943670
more...View Affiliations
View Contributors
  • L. Fu
  • D. Favier
  • T. Charitat
  • C. Gauthier
  • A. Rubin
We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.
Support of the Region Alsace (GRAINE 2011) and of Labex NIE 11-LABX-0058-NIE (Investissement d’Avenir program ANR-10- IDEX-0002-02) is gratefully acknowledged. We thank F. Thalmann for stimulating discussions.
  1. 1. B. N. Persson, Sliding Friction: Physical Principles and Applications (Springer Science & Business Media, 2000), Vol. 1. Google ScholarCrossref
  2. 2. F. MacKintosh and C. Schmidt, Curr. Opin. Colloid Interface Sci. 4, 300 (1999). https://doi.org/10.1016/S1359-0294(99)90010-9, Google ScholarCrossref, ISI
  3. 3. S. Granick, Science 253, 1374 (1991). https://doi.org/10.1126/science.253.5026.1374, Google ScholarCrossref
  4. 4. A. Mukhopadhyay and S. Granick, Curr. Opin. Colloid Interface Sci. 6, 423 (2001). https://doi.org/10.1016/S1359-0294(01)00119-4, Google ScholarCrossref
  5. 5. U. L. B. Bhushan and J. N. Israelachvili, Nature 374, 607 (1995). https://doi.org/10.1038/374607a0, Google ScholarCrossref
  6. 6. L. Léger, H. Hervet, and R. Pit, “Friction and flow with slip at fluid-solid interfaces,” ACS Symp. Ser. 781, 154–167, (2000). https://doi.org/10.1021/bk-2001-0781.ch010, Google ScholarCrossref
  7. 7. J. M. Georges, S. Millot, J. L. Loubet, and A. Tonck, J. Chem. Phys. 98, 7345 (1993). https://doi.org/10.1063/1.465059, Google ScholarScitation
  8. 8. B. Cross, A. Steinberger, C. Cottin-Bizonne, J.-P. Rieu, and E. Charlaix, Europhys. Lett. 73, 390 (2006). https://doi.org/10.1209/epl/i2005-10416-4, Google ScholarCrossref
  9. 9. S. Leroy, A. Steinberger, C. Cottin-Bizonne, A.-M. Trunfio-Sfarghiu, and E. Charlaix, Soft Matter 5, 4997 (2009). https://doi.org/10.1039/b914543e, Google ScholarCrossref
  10. 10. N. Dan, Curr. Opin. Colloid Interface Sci. 1, 48 (1996). https://doi.org/10.1016/S1359-0294(96)80043-4, Google ScholarCrossref
  11. 11. J. N. Israelachvili and S. J. Kott, J. Colloid Interface Sci. 129, 461 (1989). https://doi.org/10.1016/0021-9797(89)90459-1, Google ScholarCrossref
  12. 12. J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991). https://doi.org/10.1038/352143a0, Google ScholarCrossref
  13. 13. J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992). https://doi.org/10.1016/0167-5729(92)90015-4, Google ScholarCrossref
  14. 14. D. Chan and R. Horn, J. Chem. Phys. 83, 5311 (1985). https://doi.org/10.1063/1.449693, Google ScholarScitation, ISI
  15. 15. J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998). https://doi.org/10.1063/1.476114, Google ScholarScitation, ISI
  16. 16. J. Van Alsten and S. Granick, Phys. Rev. Lett. 61, 2570 (1988). https://doi.org/10.1103/PhysRevLett.61.2570, Google ScholarCrossref
  17. 17. C. D. Dushkin and K. Kurihara, Rev. Sci. Instrum. 69, 2095 (1998). https://doi.org/10.1063/1.1148904, Google ScholarScitation, ISI
  18. 18. B. J. Briscoe and D. C. B. Evans, Proc. R. Soc. London, Ser. A 380, 389 (1982). https://doi.org/10.1098/rspa.1982.0048, Google ScholarCrossref
  19. 19. H. B. Kutzner, P. F. Luckham, and J. Rennie, Faraday Discuss. 104, 9 (1996). https://doi.org/10.1039/FD9960400009, Google ScholarCrossref
  20. 20. H. Darowska, M. Adams, B. Briscoe, and P. Luckham, Tribol. Ser. 38, 203 (2000). https://doi.org/10.1016/S0167-8922(00)80126-1, Google ScholarCrossref
  21. 21. S. A. Joyce and J. Houston, Rev. Sci. Instrum. 62, 710 (1991). https://doi.org/10.1063/1.1142072, Google ScholarScitation, ISI
  22. 22. K. Feldman, M. Fritz, G. Hähner, A. Marti, and N. D. Spencer, Tribol. Int. 31, 99 (1998). https://doi.org/10.1016/S0301-679X(98)00012-7, Google ScholarCrossref
  23. 23. R. Buzio and U. Valbusa, in Modern Research and Educational Topics in Microscopy, Microscopy Series No. 3, edited by A. Méndez-Vilas and J. Díaz (Formatex Research Center, 2007), Vol. 2, pp. 491–499, available at http://www.formatex.org/microscopy3/pdf/pp491-499.pdf. Google Scholar
  24. 24. B. Bhushan, Springer Handbook of Nanotechnology (Springer Science & Business Media, 2010). Google ScholarCrossref
  25. 25. D. Gourdon, N. A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud, D. Stamou, M. Liley, Z. Dienes, H. Vogel et al., Tribol. Lett. 3, 317 (1997). https://doi.org/10.1023/A:1019118213740, Google ScholarCrossref
  26. 26. N. S. Tambe and B. Bhushan, Nanotechnology 16, 2309 (2005). https://doi.org/10.1088/0957-4484/16/10/054, Google ScholarCrossref
  27. 27. M. Lucas and E. Riedo, Rev. Sci. Instrum. 83, 061101 (2012). https://doi.org/10.1063/1.4720102, Google ScholarScitation, ISI
  28. 28. I. Soga, A. Dhinojwala, and S. Granick, Langmuir 14, 1156 (1998). https://doi.org/10.1021/la970812h, Google ScholarCrossref
  29. 29. C. Y. Park, H. D. Ou-Yang, and M. W. Kim, Rev. Sci. Instrum. 82, 094702 (2011). https://doi.org/10.1063/1.3627410, Google ScholarScitation
  30. 30. P. Frantz, F. Wolf, X.-d. Xiao, Y. Chen, S. Bosch, and M. Salmeron, Rev. Sci. Instrum. 68, 2499 (1997). https://doi.org/10.1063/1.1148148, Google ScholarScitation
  31. 31. A. Mukhopadhyay, J. Zhao, S. C. Bae, and S. Granick, Rev. Sci. Instrum. 74, 3067 (2003). https://doi.org/10.1063/1.1570947, Google ScholarScitation
  32. 32. R. Pit, H. Hervet, and L. Léger, Tribol. Lett. 7, 147 (1999). https://doi.org/10.1023/A:1019161101812, Google ScholarCrossref, ISI
  33. 33. A. Ponjavic, M. Chennaoui, and J. S. S. Wong, Tribol. Lett. 50, 261 (2013). https://doi.org/10.1007/s11249-013-0118-x, Google ScholarCrossref
  34. 34. J. S. S. Wong, L. Hong, S. C. Bae, and S. Granick, J. Polym. Sci., Part B: Polym. Phys. 48, 2582 (2010). https://doi.org/10.1002/polb.22118, Google ScholarCrossref
  35. 35. R. Merkel, E. Sackmann, and E. Evans, J. Phys. 50, 1535 (1989). https://doi.org/10.1051/jphys:0198900500120153500, Google ScholarCrossref
  36. 36. J. Davoust, P. F. Devaux, and L. Léger, EMBO J. 1, 1233 (1982). Google ScholarCrossref
  37. 37. K. B. Migler, H. Hervet, and L. Léger, Phys. Rev. Lett. 70, 287 (1993). https://doi.org/10.1103/PhysRevLett.70.287, Google ScholarCrossref
  38. 38. L. Léger, H. Hervet, G. Massey, and E. Durliat, J. Phys.: Condens. Matter 9, 7719 (1997). https://doi.org/10.1088/0953-8984/9/37/006, Google ScholarCrossref
  39. 39. E. Durliat, H. Hervet, and L. Léger, Europhys. Lett. 38, 383 (1997). https://doi.org/10.1209/epl/i1997-00255-3, Google ScholarCrossref
  40. 40. L. Jourdainne, S. Lecuyer, Y. Arntz, C. Picart, P. Schaaf, B. Senger, J. C. Voegel, P. Lavalle, and T. Charitat, Langmuir 24, 7842 (2008). https://doi.org/10.1021/la7040168, Google ScholarCrossref
  41. 41. M.-C. Corneci, F. Dekkiche, A.-M. Trunfio-Sfarghiu, M.-H. Meurisse, Y. Berthier, and J.-P. Rieu, Tribol. Int. 44, 1959 (2011). https://doi.org/10.1016/j.triboint.2011.08.015, Google ScholarCrossref
  42. 42. C. Gauthier and R. Schirrer, J. Mater. Sci. 35, 2121 (2000). https://doi.org/10.1023/A:1004798019914, Google ScholarCrossref
  43. 43. I. Langmuir, Trans. Faraday Soc. 15, 62 (1920). https://doi.org/10.1039/tf9201500062, Google ScholarCrossref
  1. © 2016 AIP Publishing LLC.