ABSTRACT
We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.
Acknowledgments
Support of the Region Alsace (GRAINE 2011) and of Labex NIE 11-LABX-0058-NIE (Investissement d’Avenir program ANR-10- IDEX-0002-02) is gratefully acknowledged. We thank F. Thalmann for stimulating discussions.
- 1. B. N. Persson, Sliding Friction: Physical Principles and Applications (Springer Science & Business Media, 2000), Vol. 1. Google ScholarCrossref
- 2. F. MacKintosh and C. Schmidt, Curr. Opin. Colloid Interface Sci. 4, 300 (1999). https://doi.org/10.1016/S1359-0294(99)90010-9, Google ScholarCrossref, ISI
- 3. S. Granick, Science 253, 1374 (1991). https://doi.org/10.1126/science.253.5026.1374, Google ScholarCrossref
- 4. A. Mukhopadhyay and S. Granick, Curr. Opin. Colloid Interface Sci. 6, 423 (2001). https://doi.org/10.1016/S1359-0294(01)00119-4, Google ScholarCrossref
- 5. U. L. B. Bhushan and J. N. Israelachvili, Nature 374, 607 (1995). https://doi.org/10.1038/374607a0, Google ScholarCrossref
- 6. L. Léger, H. Hervet, and R. Pit, “Friction and flow with slip at fluid-solid interfaces,” ACS Symp. Ser. 781, 154–167, (2000). https://doi.org/10.1021/bk-2001-0781.ch010, Google ScholarCrossref
- 7. J. M. Georges, S. Millot, J. L. Loubet, and A. Tonck, J. Chem. Phys. 98, 7345 (1993). https://doi.org/10.1063/1.465059, Google ScholarScitation
- 8. B. Cross, A. Steinberger, C. Cottin-Bizonne, J.-P. Rieu, and E. Charlaix, Europhys. Lett. 73, 390 (2006). https://doi.org/10.1209/epl/i2005-10416-4, Google ScholarCrossref
- 9. S. Leroy, A. Steinberger, C. Cottin-Bizonne, A.-M. Trunfio-Sfarghiu, and E. Charlaix, Soft Matter 5, 4997 (2009). https://doi.org/10.1039/b914543e, Google ScholarCrossref
- 10. N. Dan, Curr. Opin. Colloid Interface Sci. 1, 48 (1996). https://doi.org/10.1016/S1359-0294(96)80043-4, Google ScholarCrossref
- 11. J. N. Israelachvili and S. J. Kott, J. Colloid Interface Sci. 129, 461 (1989). https://doi.org/10.1016/0021-9797(89)90459-1, Google ScholarCrossref
- 12. J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991). https://doi.org/10.1038/352143a0, Google ScholarCrossref
- 13. J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992). https://doi.org/10.1016/0167-5729(92)90015-4, Google ScholarCrossref
- 14. D. Chan and R. Horn, J. Chem. Phys. 83, 5311 (1985). https://doi.org/10.1063/1.449693, Google ScholarScitation, ISI
- 15. J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998). https://doi.org/10.1063/1.476114, Google ScholarScitation, ISI
- 16. J. Van Alsten and S. Granick, Phys. Rev. Lett. 61, 2570 (1988). https://doi.org/10.1103/PhysRevLett.61.2570, Google ScholarCrossref
- 17. C. D. Dushkin and K. Kurihara, Rev. Sci. Instrum. 69, 2095 (1998). https://doi.org/10.1063/1.1148904, Google ScholarScitation, ISI
- 18. B. J. Briscoe and D. C. B. Evans, Proc. R. Soc. London, Ser. A 380, 389 (1982). https://doi.org/10.1098/rspa.1982.0048, Google ScholarCrossref
- 19. H. B. Kutzner, P. F. Luckham, and J. Rennie, Faraday Discuss. 104, 9 (1996). https://doi.org/10.1039/FD9960400009, Google ScholarCrossref
- 20. H. Darowska, M. Adams, B. Briscoe, and P. Luckham, Tribol. Ser. 38, 203 (2000). https://doi.org/10.1016/S0167-8922(00)80126-1, Google ScholarCrossref
- 21. S. A. Joyce and J. Houston, Rev. Sci. Instrum. 62, 710 (1991). https://doi.org/10.1063/1.1142072, Google ScholarScitation, ISI
- 22. K. Feldman, M. Fritz, G. Hähner, A. Marti, and N. D. Spencer, Tribol. Int. 31, 99 (1998). https://doi.org/10.1016/S0301-679X(98)00012-7, Google ScholarCrossref
- 23. R. Buzio and U. Valbusa, in Modern Research and Educational Topics in Microscopy, Microscopy Series No. 3, edited by A. Méndez-Vilas and J. Díaz (Formatex Research Center, 2007), Vol. 2, pp. 491–499, available at http://www.formatex.org/microscopy3/pdf/pp491-499.pdf. Google Scholar
- 24. B. Bhushan, Springer Handbook of Nanotechnology (Springer Science & Business Media, 2010). Google ScholarCrossref
- 25. D. Gourdon, N. A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud, D. Stamou, M. Liley, Z. Dienes, H. Vogel et al., Tribol. Lett. 3, 317 (1997). https://doi.org/10.1023/A:1019118213740, Google ScholarCrossref
- 26. N. S. Tambe and B. Bhushan, Nanotechnology 16, 2309 (2005). https://doi.org/10.1088/0957-4484/16/10/054, Google ScholarCrossref
- 27. M. Lucas and E. Riedo, Rev. Sci. Instrum. 83, 061101 (2012). https://doi.org/10.1063/1.4720102, Google ScholarScitation, ISI
- 28. I. Soga, A. Dhinojwala, and S. Granick, Langmuir 14, 1156 (1998). https://doi.org/10.1021/la970812h, Google ScholarCrossref
- 29. C. Y. Park, H. D. Ou-Yang, and M. W. Kim, Rev. Sci. Instrum. 82, 094702 (2011). https://doi.org/10.1063/1.3627410, Google ScholarScitation
- 30. P. Frantz, F. Wolf, X.-d. Xiao, Y. Chen, S. Bosch, and M. Salmeron, Rev. Sci. Instrum. 68, 2499 (1997). https://doi.org/10.1063/1.1148148, Google ScholarScitation
- 31. A. Mukhopadhyay, J. Zhao, S. C. Bae, and S. Granick, Rev. Sci. Instrum. 74, 3067 (2003). https://doi.org/10.1063/1.1570947, Google ScholarScitation
- 32. R. Pit, H. Hervet, and L. Léger, Tribol. Lett. 7, 147 (1999). https://doi.org/10.1023/A:1019161101812, Google ScholarCrossref, ISI
- 33. A. Ponjavic, M. Chennaoui, and J. S. S. Wong, Tribol. Lett. 50, 261 (2013). https://doi.org/10.1007/s11249-013-0118-x, Google ScholarCrossref
- 34. J. S. S. Wong, L. Hong, S. C. Bae, and S. Granick, J. Polym. Sci., Part B: Polym. Phys. 48, 2582 (2010). https://doi.org/10.1002/polb.22118, Google ScholarCrossref
- 35. R. Merkel, E. Sackmann, and E. Evans, J. Phys. 50, 1535 (1989). https://doi.org/10.1051/jphys:0198900500120153500, Google ScholarCrossref
- 36. J. Davoust, P. F. Devaux, and L. Léger, EMBO J. 1, 1233 (1982). Google ScholarCrossref
- 37. K. B. Migler, H. Hervet, and L. Léger, Phys. Rev. Lett. 70, 287 (1993). https://doi.org/10.1103/PhysRevLett.70.287, Google ScholarCrossref
- 38. L. Léger, H. Hervet, G. Massey, and E. Durliat, J. Phys.: Condens. Matter 9, 7719 (1997). https://doi.org/10.1088/0953-8984/9/37/006, Google ScholarCrossref
- 39. E. Durliat, H. Hervet, and L. Léger, Europhys. Lett. 38, 383 (1997). https://doi.org/10.1209/epl/i1997-00255-3, Google ScholarCrossref
- 40. L. Jourdainne, S. Lecuyer, Y. Arntz, C. Picart, P. Schaaf, B. Senger, J. C. Voegel, P. Lavalle, and T. Charitat, Langmuir 24, 7842 (2008). https://doi.org/10.1021/la7040168, Google ScholarCrossref
- 41. M.-C. Corneci, F. Dekkiche, A.-M. Trunfio-Sfarghiu, M.-H. Meurisse, Y. Berthier, and J.-P. Rieu, Tribol. Int. 44, 1959 (2011). https://doi.org/10.1016/j.triboint.2011.08.015, Google ScholarCrossref
- 42. C. Gauthier and R. Schirrer, J. Mater. Sci. 35, 2121 (2000). https://doi.org/10.1023/A:1004798019914, Google ScholarCrossref
- 43. I. Langmuir, Trans. Faraday Soc. 15, 62 (1920). https://doi.org/10.1039/tf9201500062, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.