No Access Submitted: 01 July 2015 Accepted: 03 December 2015 Published Online: 18 December 2015
Journal of Applied Physics 118, 233107 (2015); https://doi.org/10.1063/1.4938025
more...View Affiliations
View Contributors
  • M. Chekini
  • R. Filter
  • J. Bierwagen
  • A. Cunningham
  • C. Rockstuhl
  • T. Bürgi
Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.
Financial support from University of Geneva and the Swiss National Science Foundation is acknowledged. This work was supported by the German Science Foundation within Project No. RO 3640/4-1. We would like to thank Bioimaging Center of University of Geneva for the access to electron microscopy.
  1. 1. P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012). https://doi.org/10.1088/0034-4885/75/2/024402, Google ScholarCrossref
  2. 2. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, Plasmonics 9, 781 (2013). https://doi.org/10.1007/s11468-013-9660-5, Google ScholarCrossref
  3. 3. M. Chekini, P. Oulevey, and T. Burgi, Curr. Appl. Phys. 15, 253 (2015). https://doi.org/10.1016/j.cap.2014.12.016, Google ScholarCrossref
  4. 4. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Phys. Rev. B 71, 235420 (2005). https://doi.org/10.1103/PhysRevB.71.235420, Google ScholarCrossref, ISI
  5. 5. D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzan, Adv. Opt. Mater. 3, 602 (2015). https://doi.org/10.1002/adom.201500053, Google ScholarCrossref
  6. 6. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, Nanotechnology 19, 345201 (2008). https://doi.org/10.1088/0957-4484/19/34/345201, Google ScholarCrossref
  7. 7. S. Bishnoi, R. Das, P. Phadke, R. K. Kotnala, and S. Chawla, J. Appl. Phys. 116, 164318 (2014). https://doi.org/10.1063/1.4900733, Google ScholarScitation
  8. 8. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano Lett. 2, 1449 (2002). https://doi.org/10.1021/nl025819k, Google ScholarCrossref
  9. 9. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photonics 8, 835 (2014). https://doi.org/10.1038/nphoton.2014.228, Google ScholarCrossref
  10. 10. J. R. Lakowicz, Anal. Biochem. 337, 171 (2005). https://doi.org/10.1016/j.ab.2004.11.026, Google ScholarCrossref
  11. 11. S. Guddala, V. K. Dwivedi, G. V. Prakash, and D. N. Rao, J. Appl. Phys. 114, 224309 (2013). https://doi.org/10.1063/1.4842995, Google ScholarScitation, ISI
  12. 12. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, Analyst 133, 1308 (2008). https://doi.org/10.1039/b802918k, Google ScholarCrossref
  13. 13. S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, ACS Nano 8, 4440 (2014). https://doi.org/10.1021/nn406434y, Google ScholarCrossref
  14. 14. Q. Cui, F. He, L. Li, and H. Mohwald, Adv. Colloid Interface Sci. 207, 164 (2014). https://doi.org/10.1016/j.cis.2013.10.011, Google ScholarCrossref
  15. 15. T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, J. Phys. Chem. Lett. 3, 191 (2012). https://doi.org/10.1021/jz201392k, Google ScholarCrossref
  16. 16. E. Jang, K. J. Son, and W. G. Koh, Colloid Polym. Sci. 292, 1355 (2014). https://doi.org/10.1007/s00396-014-3195-y, Google ScholarCrossref
  17. 17. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir 13, 3422 (1997). https://doi.org/10.1021/la960821a, Google ScholarCrossref
  18. 18. K. Aslan, J. R. Lakowicz, and C. D. Geddes, Anal. Bioanal. Chem. 382, 926 (2005). https://doi.org/10.1007/s00216-005-3195-3, Google ScholarCrossref
  19. 19. K. Ray, R. Badugu, and J. R. Lakowicz, J. Phys. Chem. C 111, 7091 (2007). https://doi.org/10.1021/jp067635q, Google ScholarCrossref
  20. 20. A. De Luca, A. Iazzolino, J. B. Salmon, J. Leng, S. Ravaine, A. N. Grigorenko, and G. Strangi, J. Appl. Phys. 116, 104303 (2014). https://doi.org/10.1063/1.4895061, Google ScholarScitation
  21. 21. N. Akbay, J. R. Lakowicz, and K. Ray, J. Phys. Chem. C 116, 10766 (2012). https://doi.org/10.1021/jp2122714, Google ScholarCrossref
  22. 22. P. Reineck, D. Gomez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, ACS Nano 7, 6636 (2013). https://doi.org/10.1021/nn401775e, Google ScholarCrossref
  23. 23. J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, Anal. Biochem. 301, 261 (2002). https://doi.org/10.1006/abio.2001.5503, Google ScholarCrossref, ISI
  24. 24. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, Adv. Mater. 18, 91 (2006). https://doi.org/10.1002/adma.200500451, Google ScholarCrossref
  25. 25. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, Phys. Rev. Lett. 100, 203002 (2008). https://doi.org/10.1103/PhysRevLett.100.203002, Google ScholarCrossref
  26. 26. K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007). https://doi.org/10.1021/cm071510w, Google ScholarCrossref
  27. 27. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006). https://doi.org/10.1103/PhysRevLett.97.017402, Google ScholarCrossref
  28. 28. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, J. Phys. Chem. C 112, 18 (2007). https://doi.org/10.1021/jp074938r, Google ScholarCrossref
  29. 29. M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, J. Opt. Soc. Am. B 24, 2259 (2007). https://doi.org/10.1364/JOSAB.24.002259, Google ScholarCrossref
  30. 30. J.-W. Liaw, C.-S. Chen, and J.-H. Chen, J. Quant. Spectrosc. Radiat. Transfer 111, 454 (2010). https://doi.org/10.1016/j.jqsrt.2009.09.009, Google ScholarCrossref
  31. 31. S. Muhlig, D. Cialla, A. Cunningham, A. Marz, K. Weber, T. Burgi, F. Lederer, and C. Rockstuhl, J. Phys. Chem. C 118, 10230 (2014). https://doi.org/10.1021/jp409688p, Google ScholarCrossref
  32. 32. O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, Plasmonics 2, 15 (2006). https://doi.org/10.1007/s11468-006-9020-9, Google ScholarCrossref
  33. 33. R. Bardhan, N. K. Grady, and N. J. Halas, Small 4, 1716 (2008). https://doi.org/10.1002/smll.200800405, Google ScholarCrossref
  34. 34. D. Cheng and Q. H. Xu, Chem. Commun. 2007(3), 248. https://doi.org/10.1039/B612401A, Google ScholarCrossref
  35. 35. S. Damm, S. Fedele, A. Murphy, K. Holsgrove, M. Arredondo, R. Pollard, J. N. Barry, D. P. Dowling, and J. H. Rice, Appl. Phys. Lett. 106, 183109 (2015). https://doi.org/10.1063/1.4919968, Google ScholarScitation, ISI
  36. 36. N. N. Horimoto, K. Imura, and H. Okamoto, Chem. Phys. Lett. 467, 105 (2008). https://doi.org/10.1016/j.cplett.2008.10.067, Google ScholarCrossref
  37. 37. Y. M. Yu, M. Z. Yin, K. Mullen, and W. Knoll, J. Mater. Chem. 22, 7880 (2012). https://doi.org/10.1039/c2jm15931g, Google ScholarCrossref
  38. 38. J. D. S. dos Santos and R. F. Aroca, Analyst 132, 450 (2007). https://doi.org/10.1039/b618513d, Google ScholarCrossref
  39. 39. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, Nano Lett. 8, 2245 (2008). https://doi.org/10.1021/nl080872f, Google ScholarCrossref
  40. 40. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Anal. Biochem. 315, 57 (2003). https://doi.org/10.1016/S0003-2697(02)00702-9, Google ScholarCrossref
  41. 41. Y. Cheng, T. Stakenborg, P. Van Dorpe, L. Lagae, M. Wang, H. Chen, and G. Borghs, Anal. Chem. 83, 1307 (2011). https://doi.org/10.1021/ac102463c, Google ScholarCrossref
  42. 42. G. P. Acuna, F. M. Moller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, Science 338, 506 (2012). https://doi.org/10.1126/science.1228638, Google ScholarCrossref
  43. 43. Y. H. Zheng, L. Rosa, T. Thai, S. H. Ng, D. E. Gomez, H. Ohshima, and U. Bach, J. Mater. Chem. A 3, 240 (2015). https://doi.org/10.1039/C4TA05307A, Google ScholarCrossref
  44. 44. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Nano Lett. 7, 496 (2007). https://doi.org/10.1021/nl062901x, Google ScholarCrossref
  45. 45. C. Y. Jiang, S. Markutsya, and V. V. Tsukruk, Langmuir 20, 882 (2004). https://doi.org/10.1021/la0355085, Google ScholarCrossref
  46. 46. A. Cunningham, S. Muhlig, C. Rockstuhl, and T. Burgi, J. Phys. Chem. C 115, 8955 (2011). https://doi.org/10.1021/jp2011364, Google ScholarCrossref
  47. 47. C. H. Zhang, J. Zhu, J. J. Li, and J. W. Zhao, J. Appl. Phys. 117, 063102 (2015). https://doi.org/10.1063/1.4907869, Google ScholarScitation
  48. 48. S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, Appl. Phys. Lett. 103, 083103 (2013). https://doi.org/10.1063/1.4819163, Google ScholarScitation
  49. 49. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, Nano Lett. 8, 485 (2008). https://doi.org/10.1021/nl072602n, Google ScholarCrossref
  50. 50. S. Pal, P. Dutta, H. N. Wang, Z. T. Deng, S. L. Zou, H. Yan, and Y. Liu, J. Phys. Chem. C 117, 12735 (2013). https://doi.org/10.1021/jp312422n, Google ScholarCrossref
  51. 51. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, Nat. Commun. 3, 962 (2012). https://doi.org/10.1038/ncomms1964, Google ScholarCrossref
  52. 52. R. Gill and E. C. Le Ru, Phys. Chem. Chem. Phys. 13, 16366 (2011). https://doi.org/10.1039/c1cp21008d, Google ScholarCrossref
  53. 53. D. Punj, J. de Torres, H. Rigneault, and J. Wenger, Opt. Express 21, 27338 (2013). https://doi.org/10.1364/OE.21.027338, Google ScholarCrossref
  54. 54. B. H. Lukas Novotny, Principles of Nano-Optics ( Cambridge University Press, 2006). Google ScholarCrossref
  55. 55. M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. B. Bidault, Angew. Chem. Int. Ed. 51, 11083 (2012). https://doi.org/10.1002/anie.201205995, Google ScholarCrossref
  56. 56. K. Haberska and T. Ruzgas, Bioelectrochemistry 76, 153 (2009). https://doi.org/10.1016/j.bioelechem.2009.05.007, Google ScholarCrossref
  57. 57. A. Tronin, Y. Lvov, and C. Nicolini, Colloid Polym. Sci. 272, 1317 (1994). https://doi.org/10.1007/BF00657788, Google ScholarCrossref
  58. 58. P. Lavalle, C. Gergely, F. J. G. Cuisinier, G. Decher, P. Schaaf, J. C. Voegel, and C. Picart, Macromolecules 35, 4458 (2002). https://doi.org/10.1021/ma0119833, Google ScholarCrossref
  59. 59. G. Decher, Science 277, 1232 (1997). https://doi.org/10.1126/science.277.5330.1232, Google ScholarCrossref
  60. 60. X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun'ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, ACS Nano 6, 9283 (2012). https://doi.org/10.1021/nn303756a, Google ScholarCrossref
  61. 61. M. Lunz, A. L. Bradley, W. Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun'ko, V. Lesnyak, and N. Gaponik, Phys. Rev. B 81, 205316 (2010). https://doi.org/10.1103/PhysRevB.81.205316, Google ScholarCrossref
  62. 62. J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951). https://doi.org/10.1039/df9511100055, Google ScholarCrossref
  63. 63. H. Q. Zheng, C. B. Gao, and S. N. Che, Microporous Mesoporous Mater. 116, 299 (2008). https://doi.org/10.1016/j.micromeso.2008.04.016, Google ScholarCrossref
  64. 64. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, J. Phys. Chem. B 110, 15700 (2006). https://doi.org/10.1021/jp061667w, Google ScholarCrossref
  65. 65. S. Muhlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, Phys. Rev. B 81, 075317 (2010). https://doi.org/10.1103/PhysRevB.81.075317, Google ScholarCrossref
  66. 66. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370, Google ScholarCrossref, ISI
  67. 67. D. J. Zahniser and J. F. Brenner, Cytometry 6, 392 (1985). https://doi.org/10.1002/cyto.990060420, Google ScholarCrossref
  68. 68. See supplementary material at http://dx.doi.org/10.1063/1.4938025 for additional information; the maximum of extinction peaks vs. number of applied PE layers (S1), the fluorescence emission spectra of single gold nanoparticle array (S2) and double array samples (S3) of CF620R dye with excitation at 550 nm, the extinction spectra of double array samples with the NB dye (S4), the fluorescence emission spectra of the double array samples with NB as a dye layer with excitation at 590 nm (S5), fluorescence emission spectra of the double array samples with CF620R as a dye layer with excitation at 590 nm (S6) and the normalized decay curves of CF620R double array samples (S7). Google Scholar
  69. 69. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011). https://doi.org/10.1021/nl200772d, Google ScholarCrossref
  70. 70. T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, Nano Lett. 9, 3896 (2009). https://doi.org/10.1021/nl902095q, Google ScholarCrossref
  1. © 2015 AIP Publishing LLC.