ABSTRACT
Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.
ACKNOWLEDGMENTS
Financial support from University of Geneva and the Swiss National Science Foundation is acknowledged. This work was supported by the German Science Foundation within Project No. RO 3640/4-1. We would like to thank Bioimaging Center of University of Geneva for the access to electron microscopy.
REFERENCES
- 1. P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012). https://doi.org/10.1088/0034-4885/75/2/024402, Google ScholarCrossref
- 2. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, Plasmonics 9, 781 (2013). https://doi.org/10.1007/s11468-013-9660-5, Google ScholarCrossref
- 3. M. Chekini, P. Oulevey, and T. Burgi, Curr. Appl. Phys. 15, 253 (2015). https://doi.org/10.1016/j.cap.2014.12.016, Google ScholarCrossref
- 4. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Phys. Rev. B 71, 235420 (2005). https://doi.org/10.1103/PhysRevB.71.235420, Google ScholarCrossref, ISI
- 5. D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzan, Adv. Opt. Mater. 3, 602 (2015). https://doi.org/10.1002/adom.201500053, Google ScholarCrossref
- 6. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, Nanotechnology 19, 345201 (2008). https://doi.org/10.1088/0957-4484/19/34/345201, Google ScholarCrossref
- 7. S. Bishnoi, R. Das, P. Phadke, R. K. Kotnala, and S. Chawla, J. Appl. Phys. 116, 164318 (2014). https://doi.org/10.1063/1.4900733, Google ScholarScitation
- 8. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano Lett. 2, 1449 (2002). https://doi.org/10.1021/nl025819k, Google ScholarCrossref
- 9. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photonics 8, 835 (2014). https://doi.org/10.1038/nphoton.2014.228, Google ScholarCrossref
- 10. J. R. Lakowicz, Anal. Biochem. 337, 171 (2005). https://doi.org/10.1016/j.ab.2004.11.026, Google ScholarCrossref
- 11. S. Guddala, V. K. Dwivedi, G. V. Prakash, and D. N. Rao, J. Appl. Phys. 114, 224309 (2013). https://doi.org/10.1063/1.4842995, Google ScholarScitation, ISI
- 12. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, Analyst 133, 1308 (2008). https://doi.org/10.1039/b802918k, Google ScholarCrossref
- 13. S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, ACS Nano 8, 4440 (2014). https://doi.org/10.1021/nn406434y, Google ScholarCrossref
- 14. Q. Cui, F. He, L. Li, and H. Mohwald, Adv. Colloid Interface Sci. 207, 164 (2014). https://doi.org/10.1016/j.cis.2013.10.011, Google ScholarCrossref
- 15. T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, J. Phys. Chem. Lett. 3, 191 (2012). https://doi.org/10.1021/jz201392k, Google ScholarCrossref
- 16. E. Jang, K. J. Son, and W. G. Koh, Colloid Polym. Sci. 292, 1355 (2014). https://doi.org/10.1007/s00396-014-3195-y, Google ScholarCrossref
- 17. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir 13, 3422 (1997). https://doi.org/10.1021/la960821a, Google ScholarCrossref
- 18. K. Aslan, J. R. Lakowicz, and C. D. Geddes, Anal. Bioanal. Chem. 382, 926 (2005). https://doi.org/10.1007/s00216-005-3195-3, Google ScholarCrossref
- 19. K. Ray, R. Badugu, and J. R. Lakowicz, J. Phys. Chem. C 111, 7091 (2007). https://doi.org/10.1021/jp067635q, Google ScholarCrossref
- 20. A. De Luca, A. Iazzolino, J. B. Salmon, J. Leng, S. Ravaine, A. N. Grigorenko, and G. Strangi, J. Appl. Phys. 116, 104303 (2014). https://doi.org/10.1063/1.4895061, Google ScholarScitation
- 21. N. Akbay, J. R. Lakowicz, and K. Ray, J. Phys. Chem. C 116, 10766 (2012). https://doi.org/10.1021/jp2122714, Google ScholarCrossref
- 22. P. Reineck, D. Gomez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, ACS Nano 7, 6636 (2013). https://doi.org/10.1021/nn401775e, Google ScholarCrossref
- 23. J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, Anal. Biochem. 301, 261 (2002). https://doi.org/10.1006/abio.2001.5503, Google ScholarCrossref, ISI
- 24. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, Adv. Mater. 18, 91 (2006). https://doi.org/10.1002/adma.200500451, Google ScholarCrossref
- 25. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, Phys. Rev. Lett. 100, 203002 (2008). https://doi.org/10.1103/PhysRevLett.100.203002, Google ScholarCrossref
- 26. K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007). https://doi.org/10.1021/cm071510w, Google ScholarCrossref
- 27. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006). https://doi.org/10.1103/PhysRevLett.97.017402, Google ScholarCrossref
- 28. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, J. Phys. Chem. C 112, 18 (2007). https://doi.org/10.1021/jp074938r, Google ScholarCrossref
- 29. M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, J. Opt. Soc. Am. B 24, 2259 (2007). https://doi.org/10.1364/JOSAB.24.002259, Google ScholarCrossref
- 30. J.-W. Liaw, C.-S. Chen, and J.-H. Chen, J. Quant. Spectrosc. Radiat. Transfer 111, 454 (2010). https://doi.org/10.1016/j.jqsrt.2009.09.009, Google ScholarCrossref
- 31. S. Muhlig, D. Cialla, A. Cunningham, A. Marz, K. Weber, T. Burgi, F. Lederer, and C. Rockstuhl, J. Phys. Chem. C 118, 10230 (2014). https://doi.org/10.1021/jp409688p, Google ScholarCrossref
- 32. O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, Plasmonics 2, 15 (2006). https://doi.org/10.1007/s11468-006-9020-9, Google ScholarCrossref
- 33. R. Bardhan, N. K. Grady, and N. J. Halas, Small 4, 1716 (2008). https://doi.org/10.1002/smll.200800405, Google ScholarCrossref
- 34. D. Cheng and Q. H. Xu, Chem. Commun. 2007(3), 248. https://doi.org/10.1039/B612401A, Google ScholarCrossref
- 35. S. Damm, S. Fedele, A. Murphy, K. Holsgrove, M. Arredondo, R. Pollard, J. N. Barry, D. P. Dowling, and J. H. Rice, Appl. Phys. Lett. 106, 183109 (2015). https://doi.org/10.1063/1.4919968, Google ScholarScitation, ISI
- 36. N. N. Horimoto, K. Imura, and H. Okamoto, Chem. Phys. Lett. 467, 105 (2008). https://doi.org/10.1016/j.cplett.2008.10.067, Google ScholarCrossref
- 37. Y. M. Yu, M. Z. Yin, K. Mullen, and W. Knoll, J. Mater. Chem. 22, 7880 (2012). https://doi.org/10.1039/c2jm15931g, Google ScholarCrossref
- 38. J. D. S. dos Santos and R. F. Aroca, Analyst 132, 450 (2007). https://doi.org/10.1039/b618513d, Google ScholarCrossref
- 39. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, Nano Lett. 8, 2245 (2008). https://doi.org/10.1021/nl080872f, Google ScholarCrossref
- 40. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Anal. Biochem. 315, 57 (2003). https://doi.org/10.1016/S0003-2697(02)00702-9, Google ScholarCrossref
- 41. Y. Cheng, T. Stakenborg, P. Van Dorpe, L. Lagae, M. Wang, H. Chen, and G. Borghs, Anal. Chem. 83, 1307 (2011). https://doi.org/10.1021/ac102463c, Google ScholarCrossref
- 42. G. P. Acuna, F. M. Moller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, Science 338, 506 (2012). https://doi.org/10.1126/science.1228638, Google ScholarCrossref
- 43. Y. H. Zheng, L. Rosa, T. Thai, S. H. Ng, D. E. Gomez, H. Ohshima, and U. Bach, J. Mater. Chem. A 3, 240 (2015). https://doi.org/10.1039/C4TA05307A, Google ScholarCrossref
- 44. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Nano Lett. 7, 496 (2007). https://doi.org/10.1021/nl062901x, Google ScholarCrossref
- 45. C. Y. Jiang, S. Markutsya, and V. V. Tsukruk, Langmuir 20, 882 (2004). https://doi.org/10.1021/la0355085, Google ScholarCrossref
- 46. A. Cunningham, S. Muhlig, C. Rockstuhl, and T. Burgi, J. Phys. Chem. C 115, 8955 (2011). https://doi.org/10.1021/jp2011364, Google ScholarCrossref
- 47. C. H. Zhang, J. Zhu, J. J. Li, and J. W. Zhao, J. Appl. Phys. 117, 063102 (2015). https://doi.org/10.1063/1.4907869, Google ScholarScitation
- 48. S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, Appl. Phys. Lett. 103, 083103 (2013). https://doi.org/10.1063/1.4819163, Google ScholarScitation
- 49. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, Nano Lett. 8, 485 (2008). https://doi.org/10.1021/nl072602n, Google ScholarCrossref
- 50. S. Pal, P. Dutta, H. N. Wang, Z. T. Deng, S. L. Zou, H. Yan, and Y. Liu, J. Phys. Chem. C 117, 12735 (2013). https://doi.org/10.1021/jp312422n, Google ScholarCrossref
- 51. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, Nat. Commun. 3, 962 (2012). https://doi.org/10.1038/ncomms1964, Google ScholarCrossref
- 52. R. Gill and E. C. Le Ru, Phys. Chem. Chem. Phys. 13, 16366 (2011). https://doi.org/10.1039/c1cp21008d, Google ScholarCrossref
- 53. D. Punj, J. de Torres, H. Rigneault, and J. Wenger, Opt. Express 21, 27338 (2013). https://doi.org/10.1364/OE.21.027338, Google ScholarCrossref
- 54. B. H. Lukas Novotny, Principles of Nano-Optics ( Cambridge University Press, 2006). Google ScholarCrossref
- 55. M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. B. Bidault, Angew. Chem. Int. Ed. 51, 11083 (2012). https://doi.org/10.1002/anie.201205995, Google ScholarCrossref
- 56. K. Haberska and T. Ruzgas, Bioelectrochemistry 76, 153 (2009). https://doi.org/10.1016/j.bioelechem.2009.05.007, Google ScholarCrossref
- 57. A. Tronin, Y. Lvov, and C. Nicolini, Colloid Polym. Sci. 272, 1317 (1994). https://doi.org/10.1007/BF00657788, Google ScholarCrossref
- 58. P. Lavalle, C. Gergely, F. J. G. Cuisinier, G. Decher, P. Schaaf, J. C. Voegel, and C. Picart, Macromolecules 35, 4458 (2002). https://doi.org/10.1021/ma0119833, Google ScholarCrossref
- 59. G. Decher, Science 277, 1232 (1997). https://doi.org/10.1126/science.277.5330.1232, Google ScholarCrossref
- 60. X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun'ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, ACS Nano 6, 9283 (2012). https://doi.org/10.1021/nn303756a, Google ScholarCrossref
- 61. M. Lunz, A. L. Bradley, W. Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun'ko, V. Lesnyak, and N. Gaponik, Phys. Rev. B 81, 205316 (2010). https://doi.org/10.1103/PhysRevB.81.205316, Google ScholarCrossref
- 62. J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951). https://doi.org/10.1039/df9511100055, Google ScholarCrossref
- 63. H. Q. Zheng, C. B. Gao, and S. N. Che, Microporous Mesoporous Mater. 116, 299 (2008). https://doi.org/10.1016/j.micromeso.2008.04.016, Google ScholarCrossref
- 64. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, J. Phys. Chem. B 110, 15700 (2006). https://doi.org/10.1021/jp061667w, Google ScholarCrossref
- 65. S. Muhlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, Phys. Rev. B 81, 075317 (2010). https://doi.org/10.1103/PhysRevB.81.075317, Google ScholarCrossref
- 66. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370, Google ScholarCrossref, ISI
- 67. D. J. Zahniser and J. F. Brenner, Cytometry 6, 392 (1985). https://doi.org/10.1002/cyto.990060420, Google ScholarCrossref
- 68. See supplementary material at http://dx.doi.org/10.1063/1.4938025 for additional information; the maximum of extinction peaks vs. number of applied PE layers (S1), the fluorescence emission spectra of single gold nanoparticle array (S2) and double array samples (S3) of CF™620R dye with excitation at 550 nm, the extinction spectra of double array samples with the NB dye (S4), the fluorescence emission spectra of the double array samples with NB as a dye layer with excitation at 590 nm (S5), fluorescence emission spectra of the double array samples with CF™620R as a dye layer with excitation at 590 nm (S6) and the normalized decay curves of CF™620R double array samples (S7). Google Scholar
- 69. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011). https://doi.org/10.1021/nl200772d, Google ScholarCrossref
- 70. T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, Nano Lett. 9, 3896 (2009). https://doi.org/10.1021/nl902095q, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.