No Access Submitted: 18 August 2015 Accepted: 01 October 2015 Published Online: 27 October 2015
J. Chem. Phys. 143, 164707 (2015); https://doi.org/10.1063/1.4934501
more...View Affiliations
View Contributors
  • Linus Pithan
  • Eduard Meister
  • Chenyu Jin
  • Christopher Weber
  • Anton Zykov
  • Katrein Sauer
  • Wolfgang Brütting
  • Hans Riegler
  • Andreas Opitz
  • Stefan Kowarik
We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.
Parts of this research were carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We would like to thank S. Roth for assistance in using the MiNaXS beamline P03. Further experiments were performed on the ID03 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to F. Carla at ESRF for providing assistance in using beamline ID03. L. Pithan acknowledges financial support from the Studienstiftung des Deutschen Volkes and E. Meister as well as W. Brütting acknowledge funding by Deutsche Forschungsgemeinschaft DFG (Project No. Br 1728/14-1).
  1. 1. O. A. Melville, B. H. Lessard, and T. P. Bender, ACS Appl. Mater. Interfaces 7, 13105 (2015). https://doi.org/10.1021/acsami.5b01718, Google ScholarCrossref
  2. 2. A. Zen, P. Pingel, D. Neher, and U. Scherf, Phys. Status Solidi A 205, 440 (2008). https://doi.org/10.1002/pssa.200723504, Google ScholarCrossref
  3. 3. P. Beyer, T. Breuer, S. Ndiaye, A. Zykov, A. Viertel, M. Gensler, J. P. Rabe, S. Hecht, G. Witte, and S. Kowarik, ACS Appl. Mater. Interfaces 6, 21484 (2014). https://doi.org/10.1021/am506465b, Google ScholarCrossref
  4. 4. A. Hinderhofer, T. Hosokai, K. Yonezawa, A. Gerlach, K. Kato, K. Broch, C. Frank, J. Novák, S. Kera, N. Ueno, and F. Schreiber, Appl. Phys. Lett. 101, 033307 (2012). https://doi.org/10.1063/1.4737168, Google ScholarScitation, ISI
  5. 5. C. Merkl, T. Pfohl, and H. Riegler, Phys. Rev. Lett. 79, 4625 (1997). https://doi.org/10.1103/PhysRevLett.79.4625, Google ScholarCrossref
  6. 6. A. Holzwarth, S. Leporatti, and H. Riegler, Europhys. Lett. 52, 653 (2000). https://doi.org/10.1209/epl/i2000-00488-0, Google ScholarCrossref
  7. 7. S. R. Craig, G. P. Hastie, K. J. Roberts, and J. N. Sherwood, J. Mater. Chem. 4, 977 (1994). https://doi.org/10.1039/jm9940400977, Google ScholarCrossref
  8. 8. C. Weber, T. Liebig, M. Gensler, L. Pithan, S. Bommel, D. Bléger, J. P. Rabe, S. Hecht, and S. Kowarik, Macromolecules 48, 1531 (2015). https://doi.org/10.1021/ma502551b, Google ScholarCrossref
  9. 9. J. L. Lee, E. M. Pearce, and T. K. Kwei, Macromolecules 30, 8233 (1997). https://doi.org/10.1021/ma970647c, Google ScholarCrossref
  10. 10. M. Göllner, M. Huth, and B. Nickel, Adv. Mater. 22, 4350 (2010). https://doi.org/10.1002/adma.201001345, Google ScholarCrossref
  11. 11. D.-I. Kim, T. Q. Trung, B.-U. Hwang, J.-S. Kim, S. Jeon, J. Bae, J.-J. Park, and N.-E. Lee, Sci. Rep. 5, 12705 (2015). https://doi.org/10.1038/srep12705, Google ScholarCrossref
  12. 12. M. Kraus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa, A. Hinderhofer, and F. Schreiber, J. Appl. Phys. 107, 094503 (2010). https://doi.org/10.1063/1.3354086, Google ScholarScitation
  13. 13. S. Ogawa, Y. Kimura, M. Niwano, and H. Ishii, Appl. Phys. Lett. 90, 033504 (2007). https://doi.org/10.1063/1.2431713, Google ScholarScitation
  14. 14. M. Irimia-Vladu, E. D. Gåowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, Adv. Mater. 24, 375 (2012). https://doi.org/10.1002/adma.201102619, Google ScholarCrossref
  15. 15. M. Kraus, S. Haug, W. Brütting, and A. Opitz, Org. Electron. 12, 731 (2011). https://doi.org/10.1016/j.orgel.2011.02.001, Google ScholarCrossref
  16. 16. M. Horlet, M. Kraus, W. Brütting, and A. Opitz, Appl. Phys. Lett. 98, 233304 (2011). https://doi.org/10.1063/1.3598423, Google ScholarScitation
  17. 17. A. Opitz and W. Brütting, in Physics of Organic Semiconductors, edited by W. Brütting and C. Adachi (Wiley-VCH, Weinheim, Germany, 2013), pp. 239–265. Google ScholarCrossref
  18. 18. C. Weber, C. Frank, S. Bommel, T. Rukat, W. Leitenberger, P. Schäer, F. Schreiber, and S. Kowarik, J. Chem. Phys. 136, 204709 (2012). https://doi.org/10.1063/1.4719530, Google ScholarScitation
  19. 19. A. Müller, Proc. R. Soc. A 127, 417 (1930). https://doi.org/10.1098/rspa.1930.0068, Google ScholarCrossref
  20. 20. A. Müller, Proc. R. Soc. A 138, 514 (1932). https://doi.org/10.1098/rspa.1932.0200, Google ScholarCrossref
  21. 21. J. Gorce, S. J. Spells, X. Zeng, and G. Ungar, J. Phys. Chem. B 108, 3130 (2004). https://doi.org/10.1021/jp030794e, Google ScholarCrossref
  22. 22. M. Dirand, M. Bouroukba, A.-J. Briard, V. Chevallier, D. Petitjean, and J.-P. Corriou, J. Chem. Thermodyn. 34, 1255 (2002). https://doi.org/10.1006/jcht.2002.0978, Google ScholarCrossref
  23. 23. P. K. Sullivan and J. J. Weeks, J. Res. Natl. Bur. Stand., Sect. A 74A, 203 (1970). https://doi.org/10.6028/jres.074a.015, Google ScholarCrossref
  24. 24. P. K. Sullivan, J. Res. Natl. Bur. Stand., Sect. A 78A, 129 (1974). https://doi.org/10.6028/jres.078a.009, Google ScholarCrossref
  25. 25. O. Phaovibul, H. Čačković, J. Loboda-Čačković, and R. Hosemann, J. Polym. Sci., Part A-2: Polym. Phys. 11, 2377 (1973). https://doi.org/10.1002/pol.1973.180111207, Google ScholarCrossref
  26. 26. B. G. Rånby, F. F. Morehead, and N. M. Walter, J. Polym. Sci. 44, 349 (1960). https://doi.org/10.1002/pol.1960.1204414407, Google ScholarCrossref
  27. 27. A. Briard, M. Bouroukba, D. Petitjean, N. Hubert, and M. Dirand, J. Chem. Eng. Data 48, 497 (2003). https://doi.org/10.1021/je0201368, Google ScholarCrossref
  28. 28. M. Dirand, M. Bouroukba, V. Chevallier, D. Petitjean, E. Behar, and V. Ruffier-Meray, J. Chem. Eng. Data 47, 115 (2002). https://doi.org/10.1021/je0100084, Google ScholarCrossref
  29. 29. A. Tkachenko and Y. Rabin, Phys. Rev. Lett. 76, 2527 (1996). https://doi.org/10.1103/PhysRevLett.76.2527, Google ScholarCrossref
  30. 30. H. Schollmeyer, B. Struth, and H. Riegler, Langmuir 19, 5042 (2003). https://doi.org/10.1021/la026989f, Google ScholarCrossref
  31. 31. P. Lazar, H. Schollmeyer, and H. Riegler, Phys. Rev. Lett. 94, 116101 (2005). https://doi.org/10.1103/PhysRevLett.94.116101, Google ScholarCrossref
  32. 32. B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang, and M. Deutsch, Phys. Rev. E 55, 3164 (1997). https://doi.org/10.1103/PhysRevE.55.3164, Google ScholarCrossref
  33. 33. B. M. Ocko, E. B. Sirota, M. Deutsch, E. DiMasi, S. Coburn, J. Strzalka, S. Zheng, A. Tronin, T. Gog, and C. Venkataraman, Phys. Rev. E 63, 032602 (2001). https://doi.org/10.1103/PhysRevE.63.032602, Google ScholarCrossref
  34. 34. R. Köhler, P. Lazar, and H. Riegler, Appl. Phys. Lett. 89, 241906 (2006). https://doi.org/10.1063/1.2404601, Google ScholarScitation
  35. 35. D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012). https://doi.org/10.2478/s11534-011-0096-2, Google ScholarCrossref
  36. 36. A. Buffet, A. Rothkirch, R. Döhrmann, V. Körstgens, M. M. Abul Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, and S. V. Roth, J. Synchrotron Radiat. 19, 647 (2012). https://doi.org/10.1107/S0909049512016895, Google ScholarCrossref
  37. 37. S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, and J. E. Macdonald, Macromolecules 44, 2725 (2011). https://doi.org/10.1021/ma102817z, Google ScholarCrossref
  38. 38. O. Balmes, R. van Rijn, D. Wermeille, A. Resta, L. Petit, H. Isern, T. Dufrane, and R. Felici, Catal. Today 145, 220 (2009). https://doi.org/10.1016/j.cattod.2009.02.008, Google ScholarCrossref
  39. 39. See supplementary material at http://dx.doi.org/10.1063/1.4934501 for real time microscopy and GIXD video footage as well as additional x-ray diffraction results. Google Scholar
  40. 40. M. Sparenberg, A. Zykov, P. Beyer, L. Pithan, C. Weber, Y. Garmshausen, F. Carlà, S. Hecht, S. Blumstengel, F. Henneberger, and S. Kowarik, Phys. Chem. Chem. Phys. 16, 26084 (2014). https://doi.org/10.1039/C4CP04048A, Google ScholarCrossref
  41. 41. M. Bai, K. Knorr, M. J. Simpson, S. Trogisch, H. Taub, S. N. Ehrlich, H. Mo, U. G. Volkmann, and F. Y. Hansen, Europhys. Lett. 79, 26003 (2007). https://doi.org/10.1209/0295-5075/79/26003, Google ScholarCrossref
  42. 42. H. Schollmeyer, B. Ocko, and H. Riegler, Langmuir 18, 4351 (2002). https://doi.org/10.1021/la011620w, Google ScholarCrossref
  43. 43. G. Witte and C. Wöll, J. Mater. Res. 19, 1889 (2004). https://doi.org/10.1557/JMR.2004.0251, Google ScholarCrossref, ISI
  44. 44. W. S. Rasband, U. S. National Institutes Health, Bethesda, Maryland, USA, 2015, http://imagej.nih.gov/ij/. Google Scholar
  45. 45. H. Brune, in Surface and Interface Science, edited by K. Wandelt (Wiley-VCH, 2014), pp. 421–492. Google ScholarCrossref
  46. 46. C. Wagner, Z. Elektrochem 65, 581 (1961). https://doi.org/10.1002/bbpc.19610650704, Google ScholarCrossref
  47. 47. T. Ji, S. Jung, and V. K. Varadan, Org. Electron. 9, 895 (2008). https://doi.org/10.1016/j.orgel.2008.03.005, Google ScholarCrossref
  48. 48. R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, Jpn. J. Appl. Phys., Part 1 42, 4473 (2003). https://doi.org/10.1143/JJAP.42.4473, Google ScholarCrossref
  49. 49. B. Krause, A. C. Dürr, F. Schreiber, H. Dosch, and O. H. Seeck, J. Chem. Phys. 119, 3429 (2003). https://doi.org/10.1063/1.1589471, Google ScholarScitation
  50. 50. S. Kowarik, A. Gerlach, W. Leitenberger, J. Hu, G. Witte, C. Wöll, U. Pietsch, and F. Schreiber, Thin Solid Films 515, 5606 (2007). https://doi.org/10.1016/j.tsf.2006.12.020, Google ScholarCrossref
  51. 51. P. Bennema, X. Y. Liu, K. Lewtas, R. D. Tack, J. J. M. Rijpkema, and K. J. Roberts, J. Cryst. Growth 121, 679 (1992). https://doi.org/10.1016/0022-0248(92)90575-4, Google ScholarCrossref
  52. 52. P. J. C. M. van Hoof, R. F. P. Grimbergen, H. Meekes, W. J. P. van Enckevort, and P. Bennema, J. Cryst. Growth 191, 861 (1998). https://doi.org/10.1016/S0022-0248(98)00374-1, Google ScholarCrossref
  53. 53. T. Kakudate, N. Yoshimoto, and Y. Saito, Appl. Phys. Lett. 90, 081903 (2007). https://doi.org/10.1063/1.2709516, Google ScholarScitation, ISI
  54. 54. A. Gavezzotti, New J. Chem. 35, 1360 (2011). https://doi.org/10.1039/c0nj00982b, Google ScholarCrossref
  55. 55. C. C. Yang, S. Li, and J. Armellin, J. Phys. Chem. C 111, 17512 (2007). https://doi.org/10.1021/jp073505l, Google ScholarCrossref
  56. 56. L. F. Drummy, P. K. Miska, D. Alberts, N. Lee, and D. C. Martin, J. Phys. Chem. B 110, 6066 (2006). https://doi.org/10.1021/jp054951g, Google ScholarCrossref
  57. 57. X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim, Science 261, 1018 (1993). https://doi.org/10.1126/science.261.5124.1018, Google ScholarCrossref
  58. 58. P. R. Ribič, V. Kalihari, C. D. Frisbie, and G. Bratina, Phys. Rev. B 80, 115307 (2009). https://doi.org/10.1103/physrevb.80.115307, Google ScholarCrossref
  59. 59. J. E. Goose, K. Wong, P. Clancy, and M. O. Thompson, Appl. Phys. Lett. 93, 10 (2008). https://doi.org/10.1063/1.3009289, Google ScholarScitation
  1. © 2015 AIP Publishing LLC.