ABSTRACT
We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.
Acknowledgments
Parts of this research were carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We would like to thank S. Roth for assistance in using the MiNaXS beamline P03. Further experiments were performed on the ID03 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to F. Carla at ESRF for providing assistance in using beamline ID03. L. Pithan acknowledges financial support from the Studienstiftung des Deutschen Volkes and E. Meister as well as W. Brütting acknowledge funding by Deutsche Forschungsgemeinschaft DFG (Project No. Br 1728/14-1).
- 1. O. A. Melville, B. H. Lessard, and T. P. Bender, ACS Appl. Mater. Interfaces 7, 13105 (2015). https://doi.org/10.1021/acsami.5b01718, Google ScholarCrossref
- 2. A. Zen, P. Pingel, D. Neher, and U. Scherf, Phys. Status Solidi A 205, 440 (2008). https://doi.org/10.1002/pssa.200723504, Google ScholarCrossref
- 3. P. Beyer, T. Breuer, S. Ndiaye, A. Zykov, A. Viertel, M. Gensler, J. P. Rabe, S. Hecht, G. Witte, and S. Kowarik, ACS Appl. Mater. Interfaces 6, 21484 (2014). https://doi.org/10.1021/am506465b, Google ScholarCrossref
- 4. A. Hinderhofer, T. Hosokai, K. Yonezawa, A. Gerlach, K. Kato, K. Broch, C. Frank, J. Novák, S. Kera, N. Ueno, and F. Schreiber, Appl. Phys. Lett. 101, 033307 (2012). https://doi.org/10.1063/1.4737168, Google ScholarScitation, ISI
- 5. C. Merkl, T. Pfohl, and H. Riegler, Phys. Rev. Lett. 79, 4625 (1997). https://doi.org/10.1103/PhysRevLett.79.4625, Google ScholarCrossref
- 6. A. Holzwarth, S. Leporatti, and H. Riegler, Europhys. Lett. 52, 653 (2000). https://doi.org/10.1209/epl/i2000-00488-0, Google ScholarCrossref
- 7. S. R. Craig, G. P. Hastie, K. J. Roberts, and J. N. Sherwood, J. Mater. Chem. 4, 977 (1994). https://doi.org/10.1039/jm9940400977, Google ScholarCrossref
- 8. C. Weber, T. Liebig, M. Gensler, L. Pithan, S. Bommel, D. Bléger, J. P. Rabe, S. Hecht, and S. Kowarik, Macromolecules 48, 1531 (2015). https://doi.org/10.1021/ma502551b, Google ScholarCrossref
- 9. J. L. Lee, E. M. Pearce, and T. K. Kwei, Macromolecules 30, 8233 (1997). https://doi.org/10.1021/ma970647c, Google ScholarCrossref
- 10. M. Göllner, M. Huth, and B. Nickel, Adv. Mater. 22, 4350 (2010). https://doi.org/10.1002/adma.201001345, Google ScholarCrossref
- 11. D.-I. Kim, T. Q. Trung, B.-U. Hwang, J.-S. Kim, S. Jeon, J. Bae, J.-J. Park, and N.-E. Lee, Sci. Rep. 5, 12705 (2015). https://doi.org/10.1038/srep12705, Google ScholarCrossref
- 12. M. Kraus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa, A. Hinderhofer, and F. Schreiber, J. Appl. Phys. 107, 094503 (2010). https://doi.org/10.1063/1.3354086, Google ScholarScitation
- 13. S. Ogawa, Y. Kimura, M. Niwano, and H. Ishii, Appl. Phys. Lett. 90, 033504 (2007). https://doi.org/10.1063/1.2431713, Google ScholarScitation
- 14. M. Irimia-Vladu, E. D. Gåowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, Adv. Mater. 24, 375 (2012). https://doi.org/10.1002/adma.201102619, Google ScholarCrossref
- 15. M. Kraus, S. Haug, W. Brütting, and A. Opitz, Org. Electron. 12, 731 (2011). https://doi.org/10.1016/j.orgel.2011.02.001, Google ScholarCrossref
- 16. M. Horlet, M. Kraus, W. Brütting, and A. Opitz, Appl. Phys. Lett. 98, 233304 (2011). https://doi.org/10.1063/1.3598423, Google ScholarScitation
- 17. A. Opitz and W. Brütting, in Physics of Organic Semiconductors, edited by W. Brütting and C. Adachi (Wiley-VCH, Weinheim, Germany, 2013), pp. 239–265. Google ScholarCrossref
- 18. C. Weber, C. Frank, S. Bommel, T. Rukat, W. Leitenberger, P. Schäer, F. Schreiber, and S. Kowarik, J. Chem. Phys. 136, 204709 (2012). https://doi.org/10.1063/1.4719530, Google ScholarScitation
- 19. A. Müller, Proc. R. Soc. A 127, 417 (1930). https://doi.org/10.1098/rspa.1930.0068, Google ScholarCrossref
- 20. A. Müller, Proc. R. Soc. A 138, 514 (1932). https://doi.org/10.1098/rspa.1932.0200, Google ScholarCrossref
- 21. J. Gorce, S. J. Spells, X. Zeng, and G. Ungar, J. Phys. Chem. B 108, 3130 (2004). https://doi.org/10.1021/jp030794e, Google ScholarCrossref
- 22. M. Dirand, M. Bouroukba, A.-J. Briard, V. Chevallier, D. Petitjean, and J.-P. Corriou, J. Chem. Thermodyn. 34, 1255 (2002). https://doi.org/10.1006/jcht.2002.0978, Google ScholarCrossref
- 23. P. K. Sullivan and J. J. Weeks, J. Res. Natl. Bur. Stand., Sect. A 74A, 203 (1970). https://doi.org/10.6028/jres.074a.015, Google ScholarCrossref
- 24. P. K. Sullivan, J. Res. Natl. Bur. Stand., Sect. A 78A, 129 (1974). https://doi.org/10.6028/jres.078a.009, Google ScholarCrossref
- 25. O. Phaovibul, H. Čačković, J. Loboda-Čačković, and R. Hosemann, J. Polym. Sci., Part A-2: Polym. Phys. 11, 2377 (1973). https://doi.org/10.1002/pol.1973.180111207, Google ScholarCrossref
- 26. B. G. Rånby, F. F. Morehead, and N. M. Walter, J. Polym. Sci. 44, 349 (1960). https://doi.org/10.1002/pol.1960.1204414407, Google ScholarCrossref
- 27. A. Briard, M. Bouroukba, D. Petitjean, N. Hubert, and M. Dirand, J. Chem. Eng. Data 48, 497 (2003). https://doi.org/10.1021/je0201368, Google ScholarCrossref
- 28. M. Dirand, M. Bouroukba, V. Chevallier, D. Petitjean, E. Behar, and V. Ruffier-Meray, J. Chem. Eng. Data 47, 115 (2002). https://doi.org/10.1021/je0100084, Google ScholarCrossref
- 29. A. Tkachenko and Y. Rabin, Phys. Rev. Lett. 76, 2527 (1996). https://doi.org/10.1103/PhysRevLett.76.2527, Google ScholarCrossref
- 30. H. Schollmeyer, B. Struth, and H. Riegler, Langmuir 19, 5042 (2003). https://doi.org/10.1021/la026989f, Google ScholarCrossref
- 31. P. Lazar, H. Schollmeyer, and H. Riegler, Phys. Rev. Lett. 94, 116101 (2005). https://doi.org/10.1103/PhysRevLett.94.116101, Google ScholarCrossref
- 32. B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang, and M. Deutsch, Phys. Rev. E 55, 3164 (1997). https://doi.org/10.1103/PhysRevE.55.3164, Google ScholarCrossref
- 33. B. M. Ocko, E. B. Sirota, M. Deutsch, E. DiMasi, S. Coburn, J. Strzalka, S. Zheng, A. Tronin, T. Gog, and C. Venkataraman, Phys. Rev. E 63, 032602 (2001). https://doi.org/10.1103/PhysRevE.63.032602, Google ScholarCrossref
- 34. R. Köhler, P. Lazar, and H. Riegler, Appl. Phys. Lett. 89, 241906 (2006). https://doi.org/10.1063/1.2404601, Google ScholarScitation
- 35. D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012). https://doi.org/10.2478/s11534-011-0096-2, Google ScholarCrossref
- 36. A. Buffet, A. Rothkirch, R. Döhrmann, V. Körstgens, M. M. Abul Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, and S. V. Roth, J. Synchrotron Radiat. 19, 647 (2012). https://doi.org/10.1107/S0909049512016895, Google ScholarCrossref
- 37. S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, and J. E. Macdonald, Macromolecules 44, 2725 (2011). https://doi.org/10.1021/ma102817z, Google ScholarCrossref
- 38. O. Balmes, R. van Rijn, D. Wermeille, A. Resta, L. Petit, H. Isern, T. Dufrane, and R. Felici, Catal. Today 145, 220 (2009). https://doi.org/10.1016/j.cattod.2009.02.008, Google ScholarCrossref
- 39. See supplementary material at http://dx.doi.org/10.1063/1.4934501 for real time microscopy and GIXD video footage as well as additional x-ray diffraction results. Google Scholar
- 40. M. Sparenberg, A. Zykov, P. Beyer, L. Pithan, C. Weber, Y. Garmshausen, F. Carlà, S. Hecht, S. Blumstengel, F. Henneberger, and S. Kowarik, Phys. Chem. Chem. Phys. 16, 26084 (2014). https://doi.org/10.1039/C4CP04048A, Google ScholarCrossref
- 41. M. Bai, K. Knorr, M. J. Simpson, S. Trogisch, H. Taub, S. N. Ehrlich, H. Mo, U. G. Volkmann, and F. Y. Hansen, Europhys. Lett. 79, 26003 (2007). https://doi.org/10.1209/0295-5075/79/26003, Google ScholarCrossref
- 42. H. Schollmeyer, B. Ocko, and H. Riegler, Langmuir 18, 4351 (2002). https://doi.org/10.1021/la011620w, Google ScholarCrossref
- 43. G. Witte and C. Wöll, J. Mater. Res. 19, 1889 (2004). https://doi.org/10.1557/JMR.2004.0251, Google ScholarCrossref, ISI
- 44. W. S. Rasband, U. S. National Institutes Health, Bethesda, Maryland, USA, 2015, http://imagej.nih.gov/ij/. Google Scholar
- 45. H. Brune, in Surface and Interface Science, edited by K. Wandelt (Wiley-VCH, 2014), pp. 421–492. Google ScholarCrossref
- 46. C. Wagner, Z. Elektrochem 65, 581 (1961). https://doi.org/10.1002/bbpc.19610650704, Google ScholarCrossref
- 47. T. Ji, S. Jung, and V. K. Varadan, Org. Electron. 9, 895 (2008). https://doi.org/10.1016/j.orgel.2008.03.005, Google ScholarCrossref
- 48. R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, Jpn. J. Appl. Phys., Part 1 42, 4473 (2003). https://doi.org/10.1143/JJAP.42.4473, Google ScholarCrossref
- 49. B. Krause, A. C. Dürr, F. Schreiber, H. Dosch, and O. H. Seeck, J. Chem. Phys. 119, 3429 (2003). https://doi.org/10.1063/1.1589471, Google ScholarScitation
- 50. S. Kowarik, A. Gerlach, W. Leitenberger, J. Hu, G. Witte, C. Wöll, U. Pietsch, and F. Schreiber, Thin Solid Films 515, 5606 (2007). https://doi.org/10.1016/j.tsf.2006.12.020, Google ScholarCrossref
- 51. P. Bennema, X. Y. Liu, K. Lewtas, R. D. Tack, J. J. M. Rijpkema, and K. J. Roberts, J. Cryst. Growth 121, 679 (1992). https://doi.org/10.1016/0022-0248(92)90575-4, Google ScholarCrossref
- 52. P. J. C. M. van Hoof, R. F. P. Grimbergen, H. Meekes, W. J. P. van Enckevort, and P. Bennema, J. Cryst. Growth 191, 861 (1998). https://doi.org/10.1016/S0022-0248(98)00374-1, Google ScholarCrossref
- 53. T. Kakudate, N. Yoshimoto, and Y. Saito, Appl. Phys. Lett. 90, 081903 (2007). https://doi.org/10.1063/1.2709516, Google ScholarScitation, ISI
- 54. A. Gavezzotti, New J. Chem. 35, 1360 (2011). https://doi.org/10.1039/c0nj00982b, Google ScholarCrossref
- 55. C. C. Yang, S. Li, and J. Armellin, J. Phys. Chem. C 111, 17512 (2007). https://doi.org/10.1021/jp073505l, Google ScholarCrossref
- 56. L. F. Drummy, P. K. Miska, D. Alberts, N. Lee, and D. C. Martin, J. Phys. Chem. B 110, 6066 (2006). https://doi.org/10.1021/jp054951g, Google ScholarCrossref
- 57. X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim, Science 261, 1018 (1993). https://doi.org/10.1126/science.261.5124.1018, Google ScholarCrossref
- 58. P. R. Ribič, V. Kalihari, C. D. Frisbie, and G. Bratina, Phys. Rev. B 80, 115307 (2009). https://doi.org/10.1103/physrevb.80.115307, Google ScholarCrossref
- 59. J. E. Goose, K. Wong, P. Clancy, and M. O. Thompson, Appl. Phys. Lett. 93, 10 (2008). https://doi.org/10.1063/1.3009289, Google ScholarScitation
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.