ABSTRACT
A single-passage, bimodal magnetic force microscopy technique optimized for scanning samples with arbitrary topography is discussed. A double phase-locked loop system is used to mechanically excite a high quality factor cantilever under vacuum conditions on its first mode and via an oscillatory tip-sample potential on its second mode. The obtained second mode oscillation amplitude is then used as a proxy for the tip-sample distance, and for the control thereof. With appropriate z-feedback parameters, two data sets reflecting the magnetic tip-sample interaction and the sample topography are simultaneously obtained.
Support from the Swiss National Science Foundation, the CCMX, and Empa is hereby gratefully acknowledged. We thank L. Piraux, S. K. Srivastava, V. A. Antohe, M. Hehn, and T. Hauet for the preparation of the sample.
REFERENCES
- 1. E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip ( Springer, Berlin, 2011). Google Scholar
- 2. J. Schwenk, M. Marioni, S. Romer, N. R. Joshi, and H. J. Hug, Appl. Phys. Lett. 104, 112412 (2014). https://doi.org/10.1063/1.4869353, Google ScholarScitation
- 3. S. Hosaka, A. Kikukawa, Y. Honda, H. Koyanagi, and S. Tanaka, Jpn. J. Appl. Phys., Part 2 31, L904 (1992). https://doi.org/10.1143/JJAP.31.L904, Google ScholarCrossref
- 4. R. Giles, J. P. Cleveland, S. Manne, P. K. Hansma, B. Drake, P. Maivald, C. Boles, J. Gurley, and V. Elings, Appl. Phys. Lett. 63, 617 (1993). https://doi.org/10.1063/1.109967, Google ScholarScitation
- 5. J. W. Li, J. P. Cleveland, and R. Proksch, Appl. Phys. Lett. 94, 163118 (2009). https://doi.org/10.1063/1.3126521, Google ScholarScitation
- 6. P. van Schendel, H. J. Hug, B. Stiefel, S. Martin, and H. J. Güntherodt, J. Appl. Phys. 88, 435 (2000). https://doi.org/10.1063/1.373678, Google ScholarScitation, ISI
- 7. I. Schmid, M. A. Marioni, P. Kappenberger, S. Romer, M. Parlinska-Wojtan, H. J. Hug, O. Hellwig, M. J. Carey, and E. E. Fullerton, Phys. Rev. Lett. 105, 197201 (2010). https://doi.org/10.1103/PhysRevLett.105.197201, Google ScholarCrossref
- 8. We used a HF2LI Lock-in Amplifier from Zurich Instruments AG, Switzerland. Google Scholar
- 9. D. Rugar, B. C. Stipe, H. J. Mamin, C. S. Yannoni, T. D. Stowe, K. Y. Yasumura, and T. W. Kenny, Appl. Phys. A: Mater. Sci. Process. 72, S3 (2001). https://doi.org/10.1007/s003390100729, Google ScholarCrossref
- 10. H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995). https://doi.org/10.1088/0957-4484/6/1/001, Google ScholarCrossref
- 11. L. Piraux, V. A. Antohe, F. Abreu Araujo, S. K. Srivastava, M. Hehn, D. Lacour, S. Mangin, and T. Hauet, Appl. Phys. Lett. 101, 013110 (2012). https://doi.org/10.1063/1.4731640, Google ScholarScitation
- 12. T. Hauet, L. Piraux, S. K. Srivastava, V. A. Antohe, D. Lacour, M. Hehn, F. Montaigne, J. Schwenk, M. A. Marioni, H. J. Hug et al., Phys. Rev. B 89, 174421 (2014). https://doi.org/10.1103/PhysRevB.89.174421, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.