ABSTRACT
This paper presents a novel apparatus for extracting volatile species from liquids using a “sniffer-chip.” By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s−1.
Acknowledgments
Center for Individual Nanoparticle Functionality (CINF) is sponsored by The Danish National Research Foundation (No. DNRF 54).
- 1. K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, “New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces,” Energy Environ. Sci. 5(5), 7050 (2012). https://doi.org/10.1039/c2ee21234j, Google ScholarCrossref
- 2. T. Kotiaho, F. R. Lauritsen, T. K. Choudhury, R. G. Cooks, and G. T. Tsao, “Membrane introduction mass spectrometry,” Anal. Chem. 63(18), 875A–883A (1991). https://doi.org/10.1021/ac00018a717, Google ScholarCrossref
- 3. R. C. Johnson, R. G. Cooks, T. M. Allen, M. E. Cisper, and P. H. Hemberger, “Membrane introduction mass spectrometry: Trends and applications,” Mass Spectrom. Rev. 19(1), 1–37 (2000). https://doi.org/10.1002/(SICI)1098-2787(2000)19:1%3C1::AID-MAS1%3E3.0.CO;2-Y, Google ScholarCrossref
- 4. S. Bruckenstein and R. R. Gadde, “Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products,” J. Am. Chem. Soc. 93(3), 793 (1971). https://doi.org/10.1021/ja00732a049, Google ScholarCrossref
- 5. O. Wolter and J. Heitbaum, “Differential electrochemical mass spectroscopy (DEMS)–a new method for the study of electrode processes,” Ber. Bunsenges. Phys. Chem. 88, 2–6 (1984). https://doi.org/10.1002/bbpc.19840880103, Google ScholarCrossref
- 6. H. Baltruschat, “Differential electrochemical mass spectrometry,” J. Am. Soc. Mass Spectrom. 15(12), 1693–1706 (2004). https://doi.org/10.1016/j.jasms.2004.09.011, Google ScholarCrossref
- 7. H. Wang, E. Rus, and H. D. Abruña, “New double-band-electrode channel flow differential electrochemical mass spectrometry cell: Application for detecting product formation during methanol electrooxidation,” Anal. Chem. 82(11), 4319–4324 (2010). https://doi.org/10.1021/ac100320a, Google ScholarCrossref
- 8. A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE™ process,” Sens. Actuators, A 74(1-3), 13–17 (1999). https://doi.org/10.1016/S0924-4247(98)00326-4, Google ScholarCrossref
- 9. D. I. Pomerantz, “Anodic bonding,” U.S. patent 3397278 A (18 May 1965). Google Scholar
- 10. T. R. Henriksen, J. L. Olsen, P. C. K. Vesborg, I. Chorkendorff, and O. Hansen, “Highly sensitive silicon microreactor for catalyst testing,” Rev. Sci. Instrum. 80(12), 124101 (2009). https://doi.org/10.1063/1.3270191, Google ScholarScitation
- 11. D. Tegtmeyer, A. Heindrichs, and J. Heitbaum, “Electrochemical on line mass spectrometry on a rotating electrode inlet system,” Ber. Bunsenges. Phys. Chem. 93, 201–206 (1989). https://doi.org/10.1002/bbpc.19890930218, Google ScholarCrossref
- 12. S. Wasmus, E. Cattaneo, and W. Vielstich, “Reduction of carbon dioxide to methane and ethene–an on-line MS study with rotating electrodes,” Electrochim. Acta 35(4), 771–775 (1990). https://doi.org/10.1016/0013-4686(90)90014-Q, Google ScholarCrossref
- 13. M. Fujihira and T. Noguchi, “A novel differential electrochemical mass spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod,” J. Electroanal. Chem. 347, 457–463 (1993). https://doi.org/10.1016/0022-0728(93)80111-T, Google ScholarCrossref
- 14. T. Hartung and H. Baltruschat, “Differential electrochemical mass spectrometry using smooth electrodes: Adsorption and H/D-exchange reactions of benzene on Pt,” Langmuir 6(11), 953–957 (1990). https://doi.org/10.1021/la00095a012, Google ScholarCrossref
- 15. H. Baltruschat and U. Schmiemann, “The adsorption of unsaturated organic species at single crystal electrodes studied by differential electrochemical mass spectrometry,” Ber. Bunsenges. Phys. Chem. 97(3), 452–460 (1993). https://doi.org/10.1002/bbpc.19930970337, Google ScholarCrossref
- 16. Y. Gao, H. Tsuji, H. Hattori, and H. Kita, “New on-line mass spectrometer system designed for platinum-single crystal electrode and electroreduction of acetylene,” J. Electroanal. Chem. 372, 195–200 (1994). https://doi.org/10.1016/0022-0728(93)03291-V, Google ScholarCrossref
- 17. T. H. M. Housmans, A. H. Wonders, and M. T. M. Koper, “Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study,” J. Phys. Chem. B 110, 10021–10031 (2006). https://doi.org/10.1021/jp055949s, Google ScholarCrossref
- 18. A. H. Wonders, T. H. M. Housmans, V. Rosca, and M. T. M. Koper, “On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration,” J. Appl. Electrochem. 36(11), 1215–1221 (2006). https://doi.org/10.1007/s10800-006-9173-4, Google ScholarCrossref
- 19. Z. Jusys, “A new approach for simultaneous DEMS and EQCM: Electro-oxidation of adsorbed CO on Pt and Pt-Ru,” J. Electrochem. Soc. 146(3), 1093 (1999). https://doi.org/10.1149/1.1391726, Google ScholarCrossref
- 20. H. Wang, T. Löffler, and H. Baltruschat, “Formation of intermediates during methanol oxidation: A quantitative DEMS study,” J. Appl. Electrochem. 31, 759–765 (2001). https://doi.org/10.1023/A:1017539411059, Google ScholarCrossref
- 21. S. P. E. Smith, E. Casado-Rivera, and H. D. Abruña, “Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface,” J. Solid State Electrochem. 7, 582–587 (2003). https://doi.org/10.1007/s10008-003-0385-9, Google ScholarCrossref
- 22. Abd-El-Aziz A. Abd-El-Latif, J. Xu, N. Bogolowski, P. Königshoven, and H. Baltruschat, “New cell for DEMS applicable to different electrode sizes,” Electrocatalysis 3, 39–47 (2012). https://doi.org/10.1007/s12678-011-0074-x, Google ScholarCrossref
- 23. J.-P. Grote, A. R. Zeradjanin, S. Cherevko, and K. J. J. Mayrhofer, “Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity,” Rev. Sci. Instrum. 85, 104101 (2014). https://doi.org/10.1063/1.4896755, Google ScholarScitation
- 24. P. C. K. Vesborg, S.-i. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in microreactors,” J. Phys. Chem. C 1, 11162–11168 (2010). https://doi.org/10.1021/jp100552x, Google ScholarCrossref
- 25. Z. Jusys, J. Kaiser, and R. J. Behm, “Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst–a kinetic and mechanistic study by differential electrochemical mass spectrometry,” Phys. Chem. Chem. Phys. 3, 4650–4660 (2001). https://doi.org/10.1039/b104617a, Google ScholarCrossref
- 26. H. Wang, Z. Jusys, R. J. Behm, and H. D. Abruna, “New insights into the mechanism and kinetics of adsorbed CO electrooxidation on platinum: Online mass spectrometry and kinetic Monte Carlo simulation studies,” J. Phys. Chem. C 116, 11040–11053 (2012). https://doi.org/10.1021/jp301292p, Google ScholarCrossref
- 27. M. J. Weaver, S.-C. Chang, L.-W. H. Leung, X. Jiang, M. Rubel, M. Szklarczyk, D. Zurawski, and A. Wieckowski, “Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes,” J. Electroanal. Chem. 327, 247–260 (1992). https://doi.org/10.1016/0022-0728(92)80151-S, Google ScholarCrossref
- 28. T. Biegler, D. A. J. Rand, and R. Woods, “Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption,” J. Electroanal. Chem. Interfacial Electrochem. 29, 269–277 (1971). https://doi.org/10.1016/S0022-0728(71)80089-X, Google ScholarCrossref
- 29. R. W. Lindström, Y. E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, and R. J. Behm, “Electrocatalysis and transport effects on nanostructured Pt/GC electrodes,” J. Electroanal. Chem. 644(2), 90–102 (2010). https://doi.org/10.1016/j.jelechem.2009.04.034, Google ScholarCrossref
- 30. Y. Hori, K. Kikuchi, and S. Suzuki, “Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution,” Chem. Lett. 1985, 1695–1698. https://doi.org/10.1246/cl.1985.1695, Google ScholarCrossref
- 31. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, and T. F. Jaramillo, “Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces,” J. Am. Chem. Soc. 136, 14107 (2014). https://doi.org/10.1021/ja505791r, Google ScholarCrossref
- 32. C. W. Li, J. Ciston, and M. W. Kanan, “Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper,” Nature 508, 504 (2014). https://doi.org/10.1038/nature13249, Google ScholarCrossref
- 33. K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, and M. T. M. Koper, “A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes,” Chem. Sci. 2(10), 1902 (2011). https://doi.org/10.1039/c1sc00277e, Google ScholarCrossref
- 34. K. Chan, C. Tsai, H. A. Hansen, and J. K. Nørskov, “Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction,” ChemCatChem 6, 1899 (2014). https://doi.org/10.1002/cctc.201402128, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.