No Access Submitted: 23 February 2015 Accepted: 14 June 2015 Published Online: 16 July 2015
Review of Scientific Instruments 86, 075006 (2015);
more...View Affiliations
View Contributors
  • Daniel B. Trimarco
  • Thomas Pedersen
  • Ole Hansen
  • Ib Chorkendorff
  • Peter C. K. Vesborg
This paper presents a novel apparatus for extracting volatile species from liquids using a “sniffer-chip.” By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s−1.
Center for Individual Nanoparticle Functionality (CINF) is sponsored by The Danish National Research Foundation (No. DNRF 54).
  1. 1. K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, “New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces,” Energy Environ. Sci. 5(5), 7050 (2012)., Google ScholarCrossref
  2. 2. T. Kotiaho, F. R. Lauritsen, T. K. Choudhury, R. G. Cooks, and G. T. Tsao, “Membrane introduction mass spectrometry,” Anal. Chem. 63(18), 875A–883A (1991)., Google ScholarCrossref
  3. 3. R. C. Johnson, R. G. Cooks, T. M. Allen, M. E. Cisper, and P. H. Hemberger, “Membrane introduction mass spectrometry: Trends and applications,” Mass Spectrom. Rev. 19(1), 1–37 (2000).;2-Y, Google ScholarCrossref
  4. 4. S. Bruckenstein and R. R. Gadde, “Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products,” J. Am. Chem. Soc. 93(3), 793 (1971)., Google ScholarCrossref
  5. 5. O. Wolter and J. Heitbaum, “Differential electrochemical mass spectroscopy (DEMS)–a new method for the study of electrode processes,” Ber. Bunsenges. Phys. Chem. 88, 2–6 (1984)., Google ScholarCrossref
  6. 6. H. Baltruschat, “Differential electrochemical mass spectrometry,” J. Am. Soc. Mass Spectrom. 15(12), 1693–1706 (2004)., Google ScholarCrossref
  7. 7. H. Wang, E. Rus, and H. D. Abruña, “New double-band-electrode channel flow differential electrochemical mass spectrometry cell: Application for detecting product formation during methanol electrooxidation,” Anal. Chem. 82(11), 4319–4324 (2010)., Google ScholarCrossref
  8. 8. A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE process,” Sens. Actuators, A 74(1-3), 13–17 (1999)., Google ScholarCrossref
  9. 9. D. I. Pomerantz, “Anodic bonding,” U.S. patent 3397278 A (18 May 1965). Google Scholar
  10. 10. T. R. Henriksen, J. L. Olsen, P. C. K. Vesborg, I. Chorkendorff, and O. Hansen, “Highly sensitive silicon microreactor for catalyst testing,” Rev. Sci. Instrum. 80(12), 124101 (2009)., Google ScholarScitation
  11. 11. D. Tegtmeyer, A. Heindrichs, and J. Heitbaum, “Electrochemical on line mass spectrometry on a rotating electrode inlet system,” Ber. Bunsenges. Phys. Chem. 93, 201–206 (1989)., Google ScholarCrossref
  12. 12. S. Wasmus, E. Cattaneo, and W. Vielstich, “Reduction of carbon dioxide to methane and ethene–an on-line MS study with rotating electrodes,” Electrochim. Acta 35(4), 771–775 (1990)., Google ScholarCrossref
  13. 13. M. Fujihira and T. Noguchi, “A novel differential electrochemical mass spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod,” J. Electroanal. Chem. 347, 457–463 (1993)., Google ScholarCrossref
  14. 14. T. Hartung and H. Baltruschat, “Differential electrochemical mass spectrometry using smooth electrodes: Adsorption and H/D-exchange reactions of benzene on Pt,” Langmuir 6(11), 953–957 (1990)., Google ScholarCrossref
  15. 15. H. Baltruschat and U. Schmiemann, “The adsorption of unsaturated organic species at single crystal electrodes studied by differential electrochemical mass spectrometry,” Ber. Bunsenges. Phys. Chem. 97(3), 452–460 (1993)., Google ScholarCrossref
  16. 16. Y. Gao, H. Tsuji, H. Hattori, and H. Kita, “New on-line mass spectrometer system designed for platinum-single crystal electrode and electroreduction of acetylene,” J. Electroanal. Chem. 372, 195–200 (1994)., Google ScholarCrossref
  17. 17. T. H. M. Housmans, A. H. Wonders, and M. T. M. Koper, “Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study,” J. Phys. Chem. B 110, 10021–10031 (2006)., Google ScholarCrossref
  18. 18. A. H. Wonders, T. H. M. Housmans, V. Rosca, and M. T. M. Koper, “On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration,” J. Appl. Electrochem. 36(11), 1215–1221 (2006)., Google ScholarCrossref
  19. 19. Z. Jusys, “A new approach for simultaneous DEMS and EQCM: Electro-oxidation of adsorbed CO on Pt and Pt-Ru,” J. Electrochem. Soc. 146(3), 1093 (1999)., Google ScholarCrossref
  20. 20. H. Wang, T. Löffler, and H. Baltruschat, “Formation of intermediates during methanol oxidation: A quantitative DEMS study,” J. Appl. Electrochem. 31, 759–765 (2001)., Google ScholarCrossref
  21. 21. S. P. E. Smith, E. Casado-Rivera, and H. D. Abruña, “Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface,” J. Solid State Electrochem. 7, 582–587 (2003)., Google ScholarCrossref
  22. 22. Abd-El-Aziz A. Abd-El-Latif, J. Xu, N. Bogolowski, P. Königshoven, and H. Baltruschat, “New cell for DEMS applicable to different electrode sizes,” Electrocatalysis 3, 39–47 (2012)., Google ScholarCrossref
  23. 23. J.-P. Grote, A. R. Zeradjanin, S. Cherevko, and K. J. J. Mayrhofer, “Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity,” Rev. Sci. Instrum. 85, 104101 (2014)., Google ScholarScitation
  24. 24. P. C. K. Vesborg, S.-i. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in microreactors,” J. Phys. Chem. C 1, 11162–11168 (2010)., Google ScholarCrossref
  25. 25. Z. Jusys, J. Kaiser, and R. J. Behm, “Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst–a kinetic and mechanistic study by differential electrochemical mass spectrometry,” Phys. Chem. Chem. Phys. 3, 4650–4660 (2001)., Google ScholarCrossref
  26. 26. H. Wang, Z. Jusys, R. J. Behm, and H. D. Abruna, “New insights into the mechanism and kinetics of adsorbed CO electrooxidation on platinum: Online mass spectrometry and kinetic Monte Carlo simulation studies,” J. Phys. Chem. C 116, 11040–11053 (2012)., Google ScholarCrossref
  27. 27. M. J. Weaver, S.-C. Chang, L.-W. H. Leung, X. Jiang, M. Rubel, M. Szklarczyk, D. Zurawski, and A. Wieckowski, “Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes,” J. Electroanal. Chem. 327, 247–260 (1992)., Google ScholarCrossref
  28. 28. T. Biegler, D. A. J. Rand, and R. Woods, “Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption,” J. Electroanal. Chem. Interfacial Electrochem. 29, 269–277 (1971)., Google ScholarCrossref
  29. 29. R. W. Lindström, Y. E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, and R. J. Behm, “Electrocatalysis and transport effects on nanostructured Pt/GC electrodes,” J. Electroanal. Chem. 644(2), 90–102 (2010)., Google ScholarCrossref
  30. 30. Y. Hori, K. Kikuchi, and S. Suzuki, “Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution,” Chem. Lett. 1985, 1695–1698., Google ScholarCrossref
  31. 31. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, and T. F. Jaramillo, “Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces,” J. Am. Chem. Soc. 136, 14107 (2014)., Google ScholarCrossref
  32. 32. C. W. Li, J. Ciston, and M. W. Kanan, “Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper,” Nature 508, 504 (2014)., Google ScholarCrossref
  33. 33. K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, and M. T. M. Koper, “A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes,” Chem. Sci. 2(10), 1902 (2011)., Google ScholarCrossref
  34. 34. K. Chan, C. Tsai, H. A. Hansen, and J. K. Nørskov, “Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction,” ChemCatChem 6, 1899 (2014)., Google ScholarCrossref
  1. © 2015 AIP Publishing LLC.