No Access Submitted: 09 January 2015 Accepted: 12 May 2015 Published Online: 28 May 2015
J. Chem. Phys. 142, 204110 (2015); https://doi.org/10.1063/1.4921541
more...View Affiliations
View Contributors
  • Masao Hayami
  • Junji Seino
  • Hiromi Nakai
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
Some of the present calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes of Natural Sciences (NINS). This study was supported in part by the Strategic Programs for Innovative Research (SPIRE), the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and the Computational Materials Science Initiative (CMSI), Japan, as well as the MEXT program “Elements Strategy Initiative to Form Core Research Center” (since 2012), MEXT Japan, and the Core Research for Evolutional Science and Technology (CREST) Program “Theoretical Design of Materials with Innovative Functions Based on Relativistic Electronic Theory” of the Japan Science and Technology Agency (JST). J.S. is grateful to the Japan Society for the Promotion of Science (JSPS) for a Research Fellowship.
  1. 1. J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012). https://doi.org/10.1063/1.4729463, Google ScholarScitation, ISI
  2. 2. J. Seino and H. Nakai, J. Chem. Phys. 137, 144101 (2012). https://doi.org/10.1063/1.4757263, Google ScholarScitation, ISI
  3. 3. D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012). https://doi.org/10.1063/1.4729788, Google ScholarScitation, ISI
  4. 4. D. Peng, N. Middendorf, F. Weigend, and M. Reiher, J. Chem. Phys. 138, 184105 (2013). https://doi.org/10.1063/1.4803693, Google ScholarScitation, ISI
  5. 5. T. Shiozaki, J. Chem. Phys. 138, 111101 (2013). https://doi.org/10.1063/1.4795430, Google ScholarScitation, ISI
  6. 6. T. Shiozaki, J. Chem. Theory Comput. 9, 4300 (2013). https://doi.org/10.1021/ct400719d, Google ScholarCrossref
  7. 7. W. Yang, Phys. Rev. Lett. 66, 1438 (1991). https://doi.org/10.1103/PhysRevLett.66.1438, Google ScholarCrossref
  8. 8. W. Yang and T.-S. Lee, J. Chem. Phys. 103, 5674 (1995). https://doi.org/10.1063/1.470549, Google ScholarScitation, ISI
  9. 9. T. Akama, M. Kobayashi, and H. Nakai, J. Comput. Chem. 28, 2003 (2007). https://doi.org/10.1002/jcc.20707, Google ScholarCrossref
  10. 10. M. Kobayashi and H. Nakai, Int. J. Quantum Chem. 109, 2227 (2009). https://doi.org/10.1002/qua.22111, Google ScholarCrossref
  11. 11. J. Seino and H. Nakai, J. Chem. Phys. 139, 034109 (2013). https://doi.org/10.1063/1.4813595, Google ScholarScitation, ISI
  12. 12. R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1973). https://doi.org/10.1063/1.1679007, Google ScholarScitation, ISI
  13. 13. B. O. Roos, V. Veryazov, and P.-O. Widmark, Theor. Chem. Acc. 111, 345 (2004). https://doi.org/10.1007/s00214-003-0537-0, Google ScholarCrossref
  14. 14. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 108, 2851 (2004). https://doi.org/10.1021/jp031064+, Google ScholarCrossref, ISI
  15. 15. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 109, 6575 (2005). https://doi.org/10.1021/jp0581126, Google ScholarCrossref, ISI
  16. 16. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, Chem. Phys. Lett. 409, 295 (2005). https://doi.org/10.1016/j.cplett.2005.05.011, Google ScholarCrossref, ISI
  17. 17. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, P.-O. Widmark, and A. C. Borin, J. Phys. Chem. A 112, 11431 (2008). https://doi.org/10.1021/jp803213j, Google ScholarCrossref, ISI
  18. 18. T. Koga, H. Tatewaki, and T. Shimazaki, Chem. Phys. Lett. 328, 473 (2000). https://doi.org/10.1016/S0009-2614(00)00948-9, Google ScholarCrossref
  19. 19. T. Tsuchiya, M. Abe, T. Nakajima, and K. Hirao, J. Chem. Phys. 115, 4463 (2001). https://doi.org/10.1063/1.1390515, Google ScholarScitation, ISI
  20. 20. M. Dupuis, J. Rys, and H. F. King, J. Chem. Phys. 65, 111 (1976). https://doi.org/10.1063/1.432807, Google ScholarScitation, ISI
  21. 21. J. Rys, M. Dupuis, and H. F. King, J. Comput. Chem. 4, 154 (1983). https://doi.org/10.1002/jcc.540040206, Google ScholarCrossref, ISI
  22. 22. R. Lindh, U. Ryu, and B. Liu, J. Chem. Phys. 95, 5889 (1991). https://doi.org/10.1063/1.461610, Google ScholarScitation, ISI
  23. 23. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., molpro, version 2010.1, a package ofab initio programs, 2010, see http://www.molpro.net. Google Scholar
  24. 24. F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010). https://doi.org/10.1002/jcc.21318, Google ScholarCrossref, ISI
  25. 25. V. Veryazov, P.-O. Widmark, L. Serrano-Andrés, R. Lindh, and B. O. Roos, Int. J. Quantum Chem. 100, 626 (2004). https://doi.org/10.1002/qua.20166, Google ScholarCrossref
  26. 26. P. M. W. Gill and J. A. Pople, Int. J. Quantum Chem. 40, 753 (1991). https://doi.org/10.1002/qua.560400605, Google ScholarCrossref
  27. 27. S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986). https://doi.org/10.1063/1.450106, Google ScholarScitation, ISI
  28. 28. M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988). https://doi.org/10.1063/1.455553, Google ScholarScitation, ISI
  29. 29. J. A. Pople and W. J. Hehre, J. Comput. Phys. 27, 161 (1978). https://doi.org/10.1016/0021-9991(78)90001-3, Google ScholarCrossref
  30. 30. J. A. R. Sandberg and Z. Rinkevicius, J. Chem. Phys. 137, 234105 (2012). https://doi.org/10.1063/1.4769730, Google ScholarScitation
  31. 31. K. Ishida, Int. J. Quantum Chem. 59, 209 (1996). https://doi.org/10.1002/(SICI)1097-461X(1996)59:3%3C209::AID-QUA4%3E3.0.CO;2-1, Google ScholarCrossref
  32. 32. K. Ishida, J. Comput. Chem. 19, 923 (1998). https://doi.org/10.1002/(SICI)1096-987X(199806)19:8%3C923::AID-JCC11%3E3.0.CO;2-8, Google ScholarCrossref
  33. 33. T. Yanai, K. Ishida, H. Nakano, and K. Hirao, Int. J. Quantum Chem. 76, 396 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)76:3%3C396::AID-QUA8%3E3.0.CO;2-A, Google ScholarCrossref
  34. 34. M. Kobayashi and H. Nakai, J. Chem. Phys. 121, 4050 (2004). https://doi.org/10.1063/1.1778712, Google ScholarScitation
  35. 35. M. Katouda, M. Kobayashi, H. Nakai, and S. Nagase, J. Theor. Comput. Chem. 04, 139 (2005). https://doi.org/10.1142/S0219633605001374, Google ScholarCrossref
  36. 36. M. Hayami, J. Seino, and H. Nakai, J. Comput. Chem. 35, 1517 (2014). https://doi.org/10.1002/jcc.23646, Google ScholarCrossref
  37. 37. B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 206, 229 (1993). https://doi.org/10.1016/0009-2614(93)85546-Z, Google ScholarCrossref
  38. 38. H. Nakamura, J. Xidos, A. Chamberlin, C. Kelly, R. Valero, K. R. Yang, J. Thompson, J. Li, G. Hawkins, T. Zhu, B. Lynch, Y. Volobuev, D. Rinaldi, D. Liotard, C. Cramer, and D. Truhlar, HONDOPLUS-v.5.2, University of Minnesota, Minneapolis, 2013, based on HONDO–v.99.6. Google Scholar
  39. 39. L. E. McMurchie and E. R. Davidson, J. Comput. Phys. 26, 218 (1978). https://doi.org/10.1016/0021-9991(78)90092-X, Google ScholarCrossref, ISI
  40. 40. K. Ishimura and S. Nagase, Theor. Chem. Acc. 120, 185 (2008). https://doi.org/10.1007/s00214-007-0295-5, Google ScholarCrossref
  41. 41. G. D. Fletcher, Int. J. Quantum Chem. 106, 355 (2006). https://doi.org/10.1002/qua.20763, Google ScholarCrossref
  42. 42. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112, Google ScholarCrossref, ISI
  1. © 2015 AIP Publishing LLC.