ABSTRACT
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
Acknowledgments
Some of the present calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes of Natural Sciences (NINS). This study was supported in part by the Strategic Programs for Innovative Research (SPIRE), the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and the Computational Materials Science Initiative (CMSI), Japan, as well as the MEXT program “Elements Strategy Initiative to Form Core Research Center” (since 2012), MEXT Japan, and the Core Research for Evolutional Science and Technology (CREST) Program “Theoretical Design of Materials with Innovative Functions Based on Relativistic Electronic Theory” of the Japan Science and Technology Agency (JST). J.S. is grateful to the Japan Society for the Promotion of Science (JSPS) for a Research Fellowship.
- 1. J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012). https://doi.org/10.1063/1.4729463, Google ScholarScitation, ISI
- 2. J. Seino and H. Nakai, J. Chem. Phys. 137, 144101 (2012). https://doi.org/10.1063/1.4757263, Google ScholarScitation, ISI
- 3. D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012). https://doi.org/10.1063/1.4729788, Google ScholarScitation, ISI
- 4. D. Peng, N. Middendorf, F. Weigend, and M. Reiher, J. Chem. Phys. 138, 184105 (2013). https://doi.org/10.1063/1.4803693, Google ScholarScitation, ISI
- 5. T. Shiozaki, J. Chem. Phys. 138, 111101 (2013). https://doi.org/10.1063/1.4795430, Google ScholarScitation, ISI
- 6. T. Shiozaki, J. Chem. Theory Comput. 9, 4300 (2013). https://doi.org/10.1021/ct400719d, Google ScholarCrossref
- 7. W. Yang, Phys. Rev. Lett. 66, 1438 (1991). https://doi.org/10.1103/PhysRevLett.66.1438, Google ScholarCrossref
- 8. W. Yang and T.-S. Lee, J. Chem. Phys. 103, 5674 (1995). https://doi.org/10.1063/1.470549, Google ScholarScitation, ISI
- 9. T. Akama, M. Kobayashi, and H. Nakai, J. Comput. Chem. 28, 2003 (2007). https://doi.org/10.1002/jcc.20707, Google ScholarCrossref
- 10. M. Kobayashi and H. Nakai, Int. J. Quantum Chem. 109, 2227 (2009). https://doi.org/10.1002/qua.22111, Google ScholarCrossref
- 11. J. Seino and H. Nakai, J. Chem. Phys. 139, 034109 (2013). https://doi.org/10.1063/1.4813595, Google ScholarScitation, ISI
- 12. R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1973). https://doi.org/10.1063/1.1679007, Google ScholarScitation, ISI
- 13. B. O. Roos, V. Veryazov, and P.-O. Widmark, Theor. Chem. Acc. 111, 345 (2004). https://doi.org/10.1007/s00214-003-0537-0, Google ScholarCrossref
- 14. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 108, 2851 (2004). https://doi.org/10.1021/jp031064+, Google ScholarCrossref, ISI
- 15. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 109, 6575 (2005). https://doi.org/10.1021/jp0581126, Google ScholarCrossref, ISI
- 16. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, Chem. Phys. Lett. 409, 295 (2005). https://doi.org/10.1016/j.cplett.2005.05.011, Google ScholarCrossref, ISI
- 17. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, P.-O. Widmark, and A. C. Borin, J. Phys. Chem. A 112, 11431 (2008). https://doi.org/10.1021/jp803213j, Google ScholarCrossref, ISI
- 18. T. Koga, H. Tatewaki, and T. Shimazaki, Chem. Phys. Lett. 328, 473 (2000). https://doi.org/10.1016/S0009-2614(00)00948-9, Google ScholarCrossref
- 19. T. Tsuchiya, M. Abe, T. Nakajima, and K. Hirao, J. Chem. Phys. 115, 4463 (2001). https://doi.org/10.1063/1.1390515, Google ScholarScitation, ISI
- 20. M. Dupuis, J. Rys, and H. F. King, J. Chem. Phys. 65, 111 (1976). https://doi.org/10.1063/1.432807, Google ScholarScitation, ISI
- 21. J. Rys, M. Dupuis, and H. F. King, J. Comput. Chem. 4, 154 (1983). https://doi.org/10.1002/jcc.540040206, Google ScholarCrossref, ISI
- 22. R. Lindh, U. Ryu, and B. Liu, J. Chem. Phys. 95, 5889 (1991). https://doi.org/10.1063/1.461610, Google ScholarScitation, ISI
- 23. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., molpro, version 2010.1, a package ofab initio programs, 2010, see http://www.molpro.net. Google Scholar
- 24. F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010). https://doi.org/10.1002/jcc.21318, Google ScholarCrossref, ISI
- 25. V. Veryazov, P.-O. Widmark, L. Serrano-Andrés, R. Lindh, and B. O. Roos, Int. J. Quantum Chem. 100, 626 (2004). https://doi.org/10.1002/qua.20166, Google ScholarCrossref
- 26. P. M. W. Gill and J. A. Pople, Int. J. Quantum Chem. 40, 753 (1991). https://doi.org/10.1002/qua.560400605, Google ScholarCrossref
- 27. S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986). https://doi.org/10.1063/1.450106, Google ScholarScitation, ISI
- 28. M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988). https://doi.org/10.1063/1.455553, Google ScholarScitation, ISI
- 29. J. A. Pople and W. J. Hehre, J. Comput. Phys. 27, 161 (1978). https://doi.org/10.1016/0021-9991(78)90001-3, Google ScholarCrossref
- 30. J. A. R. Sandberg and Z. Rinkevicius, J. Chem. Phys. 137, 234105 (2012). https://doi.org/10.1063/1.4769730, Google ScholarScitation
- 31. K. Ishida, Int. J. Quantum Chem. 59, 209 (1996). https://doi.org/10.1002/(SICI)1097-461X(1996)59:3%3C209::AID-QUA4%3E3.0.CO;2-1, Google ScholarCrossref
- 32. K. Ishida, J. Comput. Chem. 19, 923 (1998). https://doi.org/10.1002/(SICI)1096-987X(199806)19:8%3C923::AID-JCC11%3E3.0.CO;2-8, Google ScholarCrossref
- 33. T. Yanai, K. Ishida, H. Nakano, and K. Hirao, Int. J. Quantum Chem. 76, 396 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)76:3%3C396::AID-QUA8%3E3.0.CO;2-A, Google ScholarCrossref
- 34. M. Kobayashi and H. Nakai, J. Chem. Phys. 121, 4050 (2004). https://doi.org/10.1063/1.1778712, Google ScholarScitation
- 35. M. Katouda, M. Kobayashi, H. Nakai, and S. Nagase, J. Theor. Comput. Chem. 04, 139 (2005). https://doi.org/10.1142/S0219633605001374, Google ScholarCrossref
- 36. M. Hayami, J. Seino, and H. Nakai, J. Comput. Chem. 35, 1517 (2014). https://doi.org/10.1002/jcc.23646, Google ScholarCrossref
- 37. B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 206, 229 (1993). https://doi.org/10.1016/0009-2614(93)85546-Z, Google ScholarCrossref
- 38. H. Nakamura, J. Xidos, A. Chamberlin, C. Kelly, R. Valero, K. R. Yang, J. Thompson, J. Li, G. Hawkins, T. Zhu, B. Lynch, Y. Volobuev, D. Rinaldi, D. Liotard, C. Cramer, and D. Truhlar, HONDOPLUS-v.5.2, University of Minnesota, Minneapolis, 2013, based on HONDO–v.99.6. Google Scholar
- 39. L. E. McMurchie and E. R. Davidson, J. Comput. Phys. 26, 218 (1978). https://doi.org/10.1016/0021-9991(78)90092-X, Google ScholarCrossref, ISI
- 40. K. Ishimura and S. Nagase, Theor. Chem. Acc. 120, 185 (2008). https://doi.org/10.1007/s00214-007-0295-5, Google ScholarCrossref
- 41. G. D. Fletcher, Int. J. Quantum Chem. 106, 355 (2006). https://doi.org/10.1002/qua.20763, Google ScholarCrossref
- 42. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112, Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.