ABSTRACT
We demonstrate the formation of an unusual core-shell microstructure in Co93.2P6.8 nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380 ± 50 and 1260 ± 35 Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy.
Alexander Samardak and his colleagues acknowledge the support of the Russian Ministry of Education and Science under the state task 559 and Far Eastern Federal University.
REFERENCES
- 1. F. Nasirpouri and A. Nogaret, Nanomagnetism and Spintronics ( World Scientific Pub. Co., 2011). Google Scholar
- 2. H. Zeng et al., Phys. Rev. B 65, 134426 (2000). https://doi.org/10.1103/PhysRevB.65.134426, Google ScholarCrossref
- 3. W. Schwarzacher and D. Lashmore, IEEE Trans. Magn. 32, 3133 (1996). https://doi.org/10.1109/20.508379, Google ScholarCrossref
- 4.
C. A. Ross et al., Phys. Rev. B 67, 144417 (2002); https://doi.org/10.1103/PhysRevB.65.144417, Google ScholarCrossref
also see: C. A. Ross et al., J. Magn. Magn. Mater. 249, 200 (2002). https://doi.org/10.1016/S0304-8853(02)00531-0, , Google ScholarCrossref - 5. P. M. Paulus et al., J. Magn. Magn. Mater. 224, 180 (2001). https://doi.org/10.1016/S0304-8853(00)00711-3, Google ScholarCrossref, ISI
- 6. M. Kroll et al., J. Magn. Magn. Mater. 249, 241 (2002). https://doi.org/10.1016/S0304-8853(02)00537-1, Google ScholarCrossref
- 7. J. M. Garcıa et al., J. Appl. Phys. 85, 5480 (1999). https://doi.org/10.1063/1.369868, Google ScholarScitation
- 8. G. J. Strijkers et al., J. Appl. Phys. 86, 5141 (1999). https://doi.org/10.1063/1.371490, Google ScholarScitation, ISI
- 9. H. Zeng et al., J. Appl. Phys. 87, 4718 (2000). https://doi.org/10.1063/1.373137, Google ScholarScitation
- 10. H. R. Khan and K. Petrikowski, J. Magn. Magn. Mater. 249, 458 (2000). https://doi.org/10.1016/S0304-8853(02)00453-5, Google ScholarCrossref
- 11. Y. Peng et al., J. Appl. Phys. 93, 7050 (2003). https://doi.org/10.1063/1.1557395, Google ScholarScitation
- 12. O. Kazakova et al., Phys. Rev. B 74, 184413 (2006). https://doi.org/10.1103/PhysRevB.74.184413, Google ScholarCrossref
- 13. M. Darques et al., J. Magn. Magn. Mater. 321, 2055 (2009). https://doi.org/10.1016/j.jmmm.2008.03.060, Google ScholarCrossref, ISI
- 14. G. Rivero et al., J. Appl. Phys. 69, 5454 (1991). https://doi.org/10.1063/1.348007, Google ScholarScitation
- 15. K. Hüller et al., J. Magn. Magn. Mater. 53, 103 (1985). https://doi.org/10.1016/0304-8853(85)90137-4, Google ScholarCrossref
- 16. J. Spiegel and I. Huynen, Solid State Phenom. 152–153, 389 (2009). Google ScholarCrossref
- 17. C. E. Carreón-González et al., Nano Lett. 11, 2023 (2011). https://doi.org/10.1021/nl2003939, Google ScholarCrossref
- 18. M. Darques et al., Nanotechnology 21, 145208 (2010). https://doi.org/10.1088/0957-4484/21/14/145208, Google ScholarCrossref
- 19. J. De La Torre Medina et al., Appl. Phys. Lett. 96, 072508 (2010). https://doi.org/10.1063/1.3313942, Google ScholarScitation, ISI
- 20. J. L. Maurice et al., J. Magn. Magn. Mater. 184, 1 (1998). https://doi.org/10.1016/S0304-8853(97)01104-9, Google ScholarCrossref
- 21. F. Nasirpouri, IEEE Trans. Magn. 47, 2015 (2011). https://doi.org/10.1109/TMAG.2011.2121088, Google ScholarCrossref
- 22. L. G. Vivas et al., Phys. Rev. B 85, 035439 (2012). https://doi.org/10.1103/PhysRevB.85.035439, Google ScholarCrossref
- 23. D. J. Sellmyer, J. Phys.: Condens. Matter 13, R433 (2001). https://doi.org/10.1088/0953-8984/13/25/201, Google ScholarCrossref, ISI
- 24. K. R. Pirota et al., J. Appl. Phys. 109, 083919 (2011). https://doi.org/10.1063/1.3553865, Google ScholarScitation, ISI
- 25. H. Hou et al., Eur. J. Inorg. Chem. 2005, 2625–2630. https://doi.org/10.1002/ejic.200500033, Google ScholarCrossref
- 26. V. Vega et al., Nanotechnology 23, 465709 (2012). https://doi.org/10.1088/0957-4484/23/46/465709, Google ScholarCrossref
- 27. A. S. Samardak et al., J. Magn. Magn. Mater. 383, 94 (2015). https://doi.org/10.1016/j.jmmm.2014.10.047, Google ScholarCrossref
- 28. K. Nielsch et al., Nano Lett. 2, 677 (2002). https://doi.org/10.1021/nl025537k, Google ScholarCrossref, ISI
- 29. G. Kartopu et al., J. Appl. Phys. 103, 093915 (2008). https://doi.org/10.1063/1.2917191, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.