No Access Submitted: 07 October 2014 Accepted: 13 January 2015 Published Online: 29 April 2015
Journal of Applied Physics 117, 17E715 (2015); https://doi.org/10.1063/1.4919124
more...View Affiliations
View Contributors
  • F. Nasirpouri
  • S. M. Peighambari
  • A. S. Samardak
  • A. V. Ognev
  • E. V. Sukovatitsina
  • E. B. Modin
  • L. A. Chebotkevich
  • S. V. Komogortsev
  • S. J. Bending
We demonstrate the formation of an unusual core-shell microstructure in Co93.2P6.8 nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380 ± 50 and 1260 ± 35 Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy.
Alexander Samardak and his colleagues acknowledge the support of the Russian Ministry of Education and Science under the state task 559 and Far Eastern Federal University.
  1. 1. F. Nasirpouri and A. Nogaret, Nanomagnetism and Spintronics ( World Scientific Pub. Co., 2011). Google Scholar
  2. 2. H. Zeng et al., Phys. Rev. B 65, 134426 (2000). https://doi.org/10.1103/PhysRevB.65.134426, Google ScholarCrossref
  3. 3. W. Schwarzacher and D. Lashmore, IEEE Trans. Magn. 32, 3133 (1996). https://doi.org/10.1109/20.508379, Google ScholarCrossref
  4. 4. C. A. Ross et al., Phys. Rev. B 67, 144417 (2002); https://doi.org/10.1103/PhysRevB.65.144417, Google ScholarCrossref
    also see: C. A. Ross et al., J. Magn. Magn. Mater. 249, 200 (2002). https://doi.org/10.1016/S0304-8853(02)00531-0, , Google ScholarCrossref
  5. 5. P. M. Paulus et al., J. Magn. Magn. Mater. 224, 180 (2001). https://doi.org/10.1016/S0304-8853(00)00711-3, Google ScholarCrossref, ISI
  6. 6. M. Kroll et al., J. Magn. Magn. Mater. 249, 241 (2002). https://doi.org/10.1016/S0304-8853(02)00537-1, Google ScholarCrossref
  7. 7. J. M. Garcıa et al., J. Appl. Phys. 85, 5480 (1999). https://doi.org/10.1063/1.369868, Google ScholarScitation
  8. 8. G. J. Strijkers et al., J. Appl. Phys. 86, 5141 (1999). https://doi.org/10.1063/1.371490, Google ScholarScitation, ISI
  9. 9. H. Zeng et al., J. Appl. Phys. 87, 4718 (2000). https://doi.org/10.1063/1.373137, Google ScholarScitation
  10. 10. H. R. Khan and K. Petrikowski, J. Magn. Magn. Mater. 249, 458 (2000). https://doi.org/10.1016/S0304-8853(02)00453-5, Google ScholarCrossref
  11. 11. Y. Peng et al., J. Appl. Phys. 93, 7050 (2003). https://doi.org/10.1063/1.1557395, Google ScholarScitation
  12. 12. O. Kazakova et al., Phys. Rev. B 74, 184413 (2006). https://doi.org/10.1103/PhysRevB.74.184413, Google ScholarCrossref
  13. 13. M. Darques et al., J. Magn. Magn. Mater. 321, 2055 (2009). https://doi.org/10.1016/j.jmmm.2008.03.060, Google ScholarCrossref, ISI
  14. 14. G. Rivero et al., J. Appl. Phys. 69, 5454 (1991). https://doi.org/10.1063/1.348007, Google ScholarScitation
  15. 15. K. Hüller et al., J. Magn. Magn. Mater. 53, 103 (1985). https://doi.org/10.1016/0304-8853(85)90137-4, Google ScholarCrossref
  16. 16. J. Spiegel and I. Huynen, Solid State Phenom. 152–153, 389 (2009). Google ScholarCrossref
  17. 17. C. E. Carreón-González et al., Nano Lett. 11, 2023 (2011). https://doi.org/10.1021/nl2003939, Google ScholarCrossref
  18. 18. M. Darques et al., Nanotechnology 21, 145208 (2010). https://doi.org/10.1088/0957-4484/21/14/145208, Google ScholarCrossref
  19. 19. J. De La Torre Medina et al., Appl. Phys. Lett. 96, 072508 (2010). https://doi.org/10.1063/1.3313942, Google ScholarScitation, ISI
  20. 20. J. L. Maurice et al., J. Magn. Magn. Mater. 184, 1 (1998). https://doi.org/10.1016/S0304-8853(97)01104-9, Google ScholarCrossref
  21. 21. F. Nasirpouri, IEEE Trans. Magn. 47, 2015 (2011). https://doi.org/10.1109/TMAG.2011.2121088, Google ScholarCrossref
  22. 22. L. G. Vivas et al., Phys. Rev. B 85, 035439 (2012). https://doi.org/10.1103/PhysRevB.85.035439, Google ScholarCrossref
  23. 23. D. J. Sellmyer, J. Phys.: Condens. Matter 13, R433 (2001). https://doi.org/10.1088/0953-8984/13/25/201, Google ScholarCrossref, ISI
  24. 24. K. R. Pirota et al., J. Appl. Phys. 109, 083919 (2011). https://doi.org/10.1063/1.3553865, Google ScholarScitation, ISI
  25. 25. H. Hou et al., Eur. J. Inorg. Chem. 2005, 2625–2630. https://doi.org/10.1002/ejic.200500033, Google ScholarCrossref
  26. 26. V. Vega et al., Nanotechnology 23, 465709 (2012). https://doi.org/10.1088/0957-4484/23/46/465709, Google ScholarCrossref
  27. 27. A. S. Samardak et al., J. Magn. Magn. Mater. 383, 94 (2015). https://doi.org/10.1016/j.jmmm.2014.10.047, Google ScholarCrossref
  28. 28. K. Nielsch et al., Nano Lett. 2, 677 (2002). https://doi.org/10.1021/nl025537k, Google ScholarCrossref, ISI
  29. 29. G. Kartopu et al., J. Appl. Phys. 103, 093915 (2008). https://doi.org/10.1063/1.2917191, Google ScholarScitation, ISI
  1. © 2015 AIP Publishing LLC.