No Access Submitted: 30 January 2015 Accepted: 05 March 2015 Published Online: 19 March 2015
J. Chem. Phys. 142, 114308 (2015); https://doi.org/10.1063/1.4915119
more...View Affiliations
The rotational spectrum of the van der Waals complex NH3–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (jk)NH3 = 00 ground state of free ortho-NH3 and the K = 0–1 and K = 2–1 subbands correlating with the (jk)NH3 = 11 ground state of free para-NH3. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH3–CO and para-NH3–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH3–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy De = 359.21 cm−1. The bound rovibrational levels of the NH3–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 210.43 and 218.66 cm−1 for ortho-NH3–CO and para-NH3–CO, respectively.
This work was supported by Deutsche Forschungsgemeinschaft (DFG) through research Grant No. SU 579/1-2 and by Russian Foundation for Basic Research through Grant No. 15-03-09333. A.P. acknowledges support by DFG via SFB 956. Y.K. acknowledges the support of Russian Foundation for Basic Research (Project No. 13-05-00751). Ab initio calculations were carried out using HPC resources of Skif-Cyberia (Tomsk State University).
  1. 1. Solar System Ices, edited by B. Schmitt, C. De Bergh, and M. Festou (Kluwer, Dordrecht, 1998). Google ScholarCrossref
  2. 2. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999). https://doi.org/10.1023/A:1005210417396, Google ScholarCrossref
  3. 3. G. T. Fraser, D. D. Nelson, Jr., K. I. Peterson, and W. Klemperer, J. Chem. Phys. 84, 2472 (1986). https://doi.org/10.1063/1.450366, Google ScholarScitation, ISI
  4. 4. C. Xia, K. A. Walker, and A. R. W. McKellar, Mol. Phys. 99, 643 (2001). https://doi.org/10.1080/00268970010020618, Google ScholarCrossref
  5. 5. A. R. W. McKellar, J. Chem. Phys. 108, 1811 (1998). https://doi.org/10.1063/1.475558, Google ScholarScitation, ISI
  6. 6. A. V. Potapov, L. A. Surin, V. A. Panfilov, B. S. Dumesh, T. F. Giesen, S. Schlemmer, P. L. Raston, and W. Jäger, Astrophys. J. 703, 2108 (2009). https://doi.org/10.1088/0004-637X/703/2/2108, Google ScholarCrossref
  7. 7. M. Rezaei, K. H. Michaelian, N. Moazzen-Ahmadi, and A. R. W. McKellar, J. Phys. Chem. A 117, 13752 (2013). https://doi.org/10.1021/jp407896d, Google ScholarCrossref
  8. 8. L. Surin, A. Potapov, H. S. P. Müller, and S. Schlemmer, J. Mol. Spectrosc. 307, 54 (2015). https://doi.org/10.1016/j.jms.2014.12.016, Google ScholarCrossref
  9. 9. C. Xia, K. A. Walker, and A. R. W. McKellar, J. Chem. Phys. 114, 4824 (2001). https://doi.org/10.1063/1.1349425, Google ScholarScitation
  10. 10. Y. Liu and W. Jäger, J. Chem. Phys. 121, 6240 (2004). https://doi.org/10.1063/1.1789872, Google ScholarScitation
  11. 11. A. V. Potapov, A. A. Dolgov, V. A. Panfilov, L. A. Surin, and S. Schlemmer, J. Mol. Spectrosc. 268, 112 (2011). https://doi.org/10.1016/j.jms.2011.03.018, Google ScholarCrossref
  12. 12. W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (John Wiley & Sons Inc., 1984). Google Scholar
  13. 13. B. S. Dumesh and L. A. Surin, Rev. Sci. Instrum. 67, 3458 (1996). https://doi.org/10.1063/1.1147159, Google ScholarScitation
  14. 14. L. A. Surin, B. S. Dumesh, F. Lewen, D. A. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, Rev. Sci. Instrum. 72, 2535 (2001). https://doi.org/10.1063/1.1369640, Google ScholarScitation
  15. 15. L. A. Surin, D. N. Furzikov, T. F. Giesen, S. Schlemmer, G. Winnewisser, V. A. Panfilov, B. S. Dumesh, G. W. M. Vissers, and A. van der Avoird, J. Phys. Chem. A 111, 12238 (2007). https://doi.org/10.1021/jp0743471, Google ScholarCrossref
  16. 16. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Molecular Spectra and Molecular Structure Vol. 2 (Van Nostrand, New York, 1945), p. 632. Google Scholar
  17. 17. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979). Google ScholarCrossref
  18. 18. P. Jankowski and K. Szalewicz, J. Chem. Phys. 123, 104301 (2005). https://doi.org/10.1063/1.2008216, Google ScholarScitation, ISI
  19. 19. K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994). https://doi.org/10.1063/1.466884, Google ScholarScitation, ISI
  20. 20. H.-J. W. G. Knizia and T. B. Adler, J. Chem. Phys. 130, 054104 (2009). https://doi.org/10.1063/1.3054300, Google ScholarScitation, ISI
  21. 21. Y. Ajili, K. Hammami, N. E. Jaidane, M. Lanza, Y. N. Kalugina, F. Lique, and M. Hochlaf, Phys. Chem. Chem. Phys. 15, 10062 (2013). https://doi.org/10.1039/c3cp44708a, Google ScholarCrossref
  22. 22. F. Lique, J. Klos, and M. Hochlaf, Phys. Chem. Chem. Phys. 12, 15672 (2010). https://doi.org/10.1039/c004945j, Google ScholarCrossref
  23. 23. Y. Kalugina, I. Buryak, Y. Ajili, A. Vigasin, N.-E. Jaidane, and M. Hochlaf, J. Chem. Phys. 140, 234310 (2014). https://doi.org/10.1063/1.4882900, Google ScholarScitation, ISI
  24. 24. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
  25. 25. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initioprograms, 2010, see http://www.molpro.net. Google Scholar
  26. 26. W. Klopper, Mol. Phys. 99, 481 (2001). https://doi.org/10.1080/00268970010017315, Google ScholarCrossref
  27. 27. F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002). https://doi.org/10.1063/1.1445115, Google ScholarScitation, ISI
  28. 28. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561, Google ScholarCrossref
  29. 29. C. Rist and A. Faure, J. Math. Chem. 50, 588 (2011). https://doi.org/10.1007/s10910-011-9821-8, Google ScholarCrossref
  30. 30. T. R. Phillips, S. Maluendes, A. D. McLean, and S. Green, J. Chem. Phys. 101, 5824 (1994). https://doi.org/10.1063/1.467297, Google ScholarScitation, ISI
  31. 31. P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedžuch, and J. Noga, J. Chem. Phys. 129, 134306 (2008). https://doi.org/10.1063/1.2988314, Google ScholarScitation, ISI
  32. 32. A. van der Avoird and D. J. Nesbitt, J. Chem. Phys. 134, 044314 (2011). https://doi.org/10.1063/1.3533232, Google ScholarScitation, ISI
  33. 33. G. C. Groenenboom, P. E. S. Wormer, A. van der Avoird, E. M. Mas, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 113, 6702 (2000). https://doi.org/10.1063/1.1311290, Google ScholarScitation, ISI
  34. 34. D. M. Brink and G. R. Satchler, Angular Momentum, 3rd ed. (Clarendon, Oxford, 1993). Google Scholar
  35. 35. K. B. Gubbels, S. Y. T. van de Meerakker, G. C. Groenenboom, G. Meijer, and A. van der Avoird, J. Chem. Phys. 136, 074301 (2012). https://doi.org/10.1063/1.3683219, Google ScholarScitation, ISI
  36. 36. O. Tkac, A. Kumar Saha, J. Onvlee, C.-H. Yang, G. Sarma, C. Bishwarkarma, S. Y. T. van de Meerakker, A. van der Avoird, D. H. Parker, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 16, 477 (2014). https://doi.org/10.1039/c3cp53550a, Google ScholarCrossref
  37. 37. J. Loreau, J. Liévin, Y. Scribano, and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014). https://doi.org/10.1063/1.4903047, Google ScholarScitation, ISI
  38. 38. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998). Google Scholar
  39. 39. E. Zwart, H. Linnartz, W. Leo Meerts, G. T. Fraser, D. D. Nelson, Jr., and W. Klemperer, J. Chem. Phys. 95, 793 (1991). https://doi.org/10.1063/1.461086, Google ScholarScitation
  1. © 2015 AIP Publishing LLC.