No Access Submitted: 07 October 2014 Accepted: 23 February 2015 Published Online: 09 March 2015
Journal of Applied Physics 117, 103903 (2015); https://doi.org/10.1063/1.4914074
more...View Affiliations
View Contributors
  • M. Boskovic
  • G. F. Goya
  • S. Vranjes-Djuric
  • N. Jovic
  • B. Jancar
  • B. Antic
Herein we present the results of specific loss power (SLP) analysis of polydisperse water based ferrofluids, Fe3O4/PEG200 and Fe3O4/PEG6000, with average Fe3O4 particle size of 9 nm and 11 nm, respectively. Specific loss power was measured in alternating magnetic field of various amplitudes and at fixed frequency of 580.5 kHz. Maximum SLP values acquired were 195 W/g for Fe3O4/PEG200 and 60 W/g for Fe3O4/PEG6000 samples. The samples were labeled as superparamagnetic by magnetization measurements, but SLP field dependence showed deviation from the behavior predicted by the commonly employed linear response theory. The scope of this theory for both samples with wide particle size distribution is discussed. Deviation from the expected behavior is explained by referring to polydisperse nature of the samples and field dependent relaxation rates.
Ministry of Education, Science and Technological Development of the Republic of Serbia supported this work financially through the Project's Grant No. III45015.
  1. 1. R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006). https://doi.org/10.1088/0953-8984/18/38/S26, Google ScholarCrossref, ISI
  2. 2. H. Mamiya, J. Nanomaterials 2013, 752973. https://doi.org/10.1155/2013/752973, Google ScholarCrossref
  3. 3. A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014). https://doi.org/10.1016/j.jmmm.2013.11.006, Google ScholarCrossref
  4. 4. H. Mamiya and B. Jeyadevan, Sci. Rep. 1, 157 (2011). https://doi.org/10.1038/srep00157, Google ScholarCrossref
  5. 5. D. J. Dunlop, J. Geophys. Res. 78, 1780, doi: https://doi.org/10.1029/JB078i011p01780 (1973). Google ScholarCrossref
  6. 6. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002). https://doi.org/10.1016/S0304-8853(02)00706-0, Google ScholarCrossref, ISI
  7. 7. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007, Google ScholarCrossref, ISI
  8. 8. J. J. Lu, H. L. Huang, and I. Klik, J. Appl. Phys. 76, 1726 (1994). https://doi.org/10.1063/1.358424, Google ScholarScitation, ISI
  9. 9. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582, Google ScholarScitation, ISI
  10. 10. H. Pfeiffer, Phys. Status Solidi A 118, 295 (1990). https://doi.org/10.1002/pssa.2211180133, Google ScholarCrossref
  11. 11. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009). https://doi.org/10.1063/1.3173280, Google ScholarScitation, ISI
  12. 12. B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L-M. Lacroix, M. Gougeon, B. Chaudret, and M. Respaud, Adv. Funct. Mater. 21, 4573 (2011). https://doi.org/10.1002/adfm.201101243, Google ScholarCrossref, ISI
  13. 13. R. Hergt, S. Dutz, and M. Roder, J. Phys.: Condens. Matter 20, 385214 (2008). https://doi.org/10.1088/0953-8984/20/38/385214, Google ScholarCrossref, ISI
  14. 14. R. Massart, IEEE Trans. Magn. 17, 1247 (1981). https://doi.org/10.1109/TMAG.1981.1061188, Google ScholarCrossref, ISI
  15. 15. J. Giri, T. Sriharsha, and D. Bahadur, J. Mater. Chem. 14, 875 (2004). https://doi.org/10.1039/b310668c, Google ScholarCrossref
  16. 16. A. Mukhopadhyay, N. Joshi, K. Chattopadhyay, and G. De, ACS Appl. Mater. Interfaces 4, 142 (2012). https://doi.org/10.1021/am201166m, Google ScholarCrossref
  17. 17. W. C. Nunes, W. S. D. Folly, J. P. Sinnecker, and M. A. Novak, Phys. Rev. B 70, 014419 (2004). https://doi.org/10.1103/PhysRevB.70.014419, Google ScholarCrossref, ISI
  18. 18. R. M. Ferguson, K. R. Minard, A. P. Khandhar, and K. M. Krishnan, Med. Phys. 38, 1619 (2011). https://doi.org/10.1118/1.3554646, Google ScholarCrossref, ISI
  19. 19. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. ( Wiley, Hooben, 2009), p. 227. Google Scholar
  20. 20. P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M. P. Morales, G. Rivero, and A. Hernando, J. Phys. Chem. C116, 25602 (2012). https://doi.org/10.1021/jp310771p, Google ScholarCrossref
  21. 21. E. Lima, Jr., E. De Biasi, M. V. Mansilla, M. E. Saleta, M. Granada, H. E. Troiani, F. B. Effenberger, L. M. Rossi, H. R. Rechenberg, and R. D. Zysler, J. Phys. D: Appl. Phys. 46, 045002 (2013). https://doi.org/10.1088/0022-3727/46/4/045002, Google ScholarCrossref, ISI
  22. 22. R. Muller, S. Dutz, A. Neeb, A. C. B. Cato, and M. Zeisberger, J. Magn. Magn. Mater. 328, 80 (2013). https://doi.org/10.1016/j.jmmm.2012.09.064, Google ScholarCrossref
  23. 23. R. Kaiser and G. Miskolczy, J. Appl. Phys. 41, 1064 (1970). https://doi.org/10.1063/1.1658812, Google ScholarScitation
  24. 24. R. W. Chantrell, J. Popplewell, and S. W. Charles, IEEE Trans. Magn. 14, 975 (1978). https://doi.org/10.1109/TMAG.1978.1059918, Google ScholarCrossref, ISI
  1. © 2015 AIP Publishing LLC.