No Access Submitted: 12 December 2014 Accepted: 15 February 2015 Published Online: 27 February 2015
Journal of Applied Physics 117, 083303 (2015); https://doi.org/10.1063/1.4913623
more...View Affiliations
View Contributors
  • M. Sode
  • W. Jacob
  • T. Schwarz-Selinger
  • H. Kersten
A comprehensive experimental investigation of absolute ion and neutral species densities in an inductively coupled H2-N2-Ar plasma was carried out. Additionally, the radical and ion densities were calculated using a zero-dimensional rate equation model. The H2-N2-Ar plasma was studied at a pressure of 1.5 Pa and an rf power of 200 W. The N2 partial pressure fraction was varied between fN2=0% and 56% by a simultaneous reduction of the H2 partial pressure fraction. The Ar partial pressure fraction was held constant at about 1%. NH3 was found to be produced almost exclusively on the surfaces of the chamber wall. NH3 contributes up to 12% to the background gas. To calculate the radical densities with the rate equation model, it is necessary to know the corresponding wall loss times twrad of the radicals. twrad was determined by the temporal decay of radical densities in the afterglow with ionization threshold mass spectrometry during pulsed operation and based on these experimental data the absolute densities of the radical species were calculated and compared to measurement results. Ion densities were determined using a plasma monitor (mass and energy resolved mass spectrometer). H3+ is the dominant ion in the range of 0.0fN2<3.4%. For 3.4<fN2<40%,NH3+ and NH4+ are the most abundant ions and agree with each other within the experimental uncertainty. For fN2=56%,N2H+ is the dominant ion, while NH3+ and NH4+ have only a slightly lower density. Ion species with densities in the range between 0.5% and 10% of ni,tot are H2+, ArH+, and NH2+. Ion species with densities less than 0.5% of ni,tot are H+, Ar+, N+, and NH+. Our model describes the measured ion densities of the H2-N2-Ar plasma reasonably well. The ion chemistry, i.e., the production and loss processes of the ions and radicals, is discussed in detail. The main features, i.e., the qualitative abundance of the ion species and the ion density dependence on the N2 partial pressure fraction, are well reproduced by the model.
We gratefully acknowledge help from T. Dürbeck and W. Hohlenburger for technical assistance.
  1. 1. S. Xu, S. Y. Huang, I. Levchenko, H. P. Zhou, D. Y. Wei, S. Q. Xiao, L. X. Xu, W. S. Yan, and K. Ostrikov, “ Highly efficient silicon nanoarray solar cells by a single-step plasma-based process,” Adv. Energy Mater. 1, 373–376 (2011). https://doi.org/10.1002/aenm.201100085, Google ScholarCrossref
  2. 2. K. Ostrikov, U. Cvelbar, and A. B. Murphy, “ Plasma nanoscience: Setting directions, tackling grand challenges,” J. Phys. D: Appl. Phys. 44, 174001 (2011). https://doi.org/10.1088/0022-3727/44/17/174001, Google ScholarCrossref
  3. 3. E. Carrasco, M. Jimenez-Redondo, I. Tanarro, and V. J. Herrero, “ Neutral and ion chemistry in low pressure dc plasmas of H2/N2 mixtures: Routes for the efficient production of NH3 and NH4+,” Phys. Chem. Chem. Phys. 13, 19561–19572 (2011). https://doi.org/10.1039/c1cp22284h, Google ScholarCrossref
  4. 4. T.-P. Ma, “ Making silicon nitride film a viable gate dielectric,” IEEE Trans. Electron Devices 45, 680–690 (1998). https://doi.org/10.1109/16.661229, Google ScholarCrossref
  5. 5. A. G. Aberle, “ Overview on SiN surface passivation of crystalline silicon solar cells,” in PVSEC [Sol. Energy Mater. Sol. Cells 65, 239–248 (2001)]. Google ScholarCrossref
  6. 6. H. Nagai, S. Takashima, M. Hiramatsu, M. Hori, and T. Goto, “ Behavior of atomic radicals and their effects on organic low dielectric constant film etching in high density N2/H2 and N2/NH3 plasmas,” J. Appl. Phys. 91, 2615–2621 (2002). https://doi.org/10.1063/1.1435825, Google ScholarScitation
  7. 7. C. S. Moon, K. Takeda, S. Takashima, M. Sekine, Y. Setsuhara, M. Shiratani, and M. Hori, “ Surface loss probabilities of H and N radicals on different materials in afterglow plasmas employing H2 and N2 mixture gases,” J. Appl. Phys. 107, 103310 (2010). https://doi.org/10.1063/1.3372750, Google ScholarScitation
  8. 8. J. H. van Helden, P. J. van den Oever, W. M. M. Kessels, M. C. M. van de Sanden, D. C. Schram, and R. Engeln, “ Production mechanisms of NH and NH2 radicals in N2-H2 plasmas,” J. Phys. Chem. A 111, 11460–11472 (2007). https://doi.org/10.1021/jp0727650, Google ScholarCrossref
  9. 9. A. Ricard, B. F. Gordiets, M. J. Pinheiro, C. M. Ferreira, G. Baravian, J. Amorim, S. Bockel, and H. Michel, “ Diagnostic and modeling of N2-H2 discharges for iron nitriding,” Eur. Phys. J.: Appl. Phys. 4, 87–93 (1998). https://doi.org/10.1051/epjap:1998246, Google ScholarCrossref
  10. 10. H. Kim, “ Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing,” J. Vac. Sci. Technol., B 21, 2231–2261 (2003). https://doi.org/10.1116/1.1622676, Google ScholarCrossref
  11. 11. K. V. Laer, S. Tinck, V. Samara, J. F. de Marneffe, and A. Bogaerts, “ Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: Modeling and experimental investigation,” Plasma Sources Sci. Technol. 22, 025011 (2013). https://doi.org/10.1088/0963-0252/22/2/025011, Google ScholarCrossref
  12. 12. E. N. Eremin, Russ. J. Phys. Chem. 49, 1112 (1975). Google Scholar
  13. 13. P. Vankan, T. Rutten, S. Mazouffre, D. C. Schram, and R. Engeln, “ Absolute density measurements of ammonia produced via plasma-activated catalysis,” Appl. Phys. Lett. 81, 418–420 (2002). https://doi.org/10.1063/1.1494104, Google ScholarScitation
  14. 14. D. Neuwirth, V. Rohde, T. Schwarz-Selinger, and A. U. G. Team, “ Formation of ammonia during nitrogen-seeded discharges at ASDEX Upgrade,” Plasma Phys. Controlled Fusion 54, 085008 (2012). https://doi.org/10.1088/0741-3335/54/8/085008, Google ScholarCrossref
  15. 15. M. Oberkofler, D. Douai, S. Brezinsek, J. Coenen, T. Dittmar, A. Drenik, S. Romanelli, E. Joffrin, K. McCormick, M. Brix, G. Calabro, M. Clever, C. Giroud, U. Kruezi, K. Lawson, C. Linsmeier, A. M. Rojo, A. Meigs, S. Marsen, R. Neu, M. Reinelt, B. Sieglin, G. Sips, M. Stamp, and F. Tabares, “ First nitrogen-seeding experiments in JET with the ITER-like wall,” in Proceedings of the 20th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices [J. Nucl. Mater. 438(Suppl.), S258–S261 (2013)]. Google ScholarCrossref
  16. 16. A. Kallenbach, R. Dux, J. C. Fuchs, R. Fischer, B. Geiger, L. Giannone, A. Herrmann, T. Lunt, V. Mertens, R. McDermott, R. Neu, T. Puetterich, S. Rathgeber, V. Rohde, K. Schmid, J. Schweinzer, W. Treutterer, and A. U. G. Team, “ Divertor power load feedback with nitrogen seeding in ASDEX Upgrade,” Plasma Phys. Controlled Fusion 52, 055002 (2010). https://doi.org/10.1088/0741-3335/52/5/055002, Google ScholarCrossref
  17. 17. A. Kallenbach, M. Balden, R. Dux, T. Eich, C. Giroud, A. Huber, G. Maddison, M. Mayer, K. McCormick, R. Neu, T. Petrie, T. Pütterich, J. Rapp, M. Reinke, K. Schmid, J. Schweinzer, and S. Wolfe, “ Plasma surface interactions in impurity seeded plasmas,” in Proceedings of the 19th International Conference on Plasma-Surface Interactions in Controlled Fusion [J. Nucl. Mater. 415, S19–S26 (2011)]. Google ScholarCrossref
  18. 18. A. Kallenbach, M. Bernert, T. Eich, J. Fuchs, L. Giannone, A. Herrmann, J. Schweinzer, W. Treutterer, and A. U. G. Team, “ Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade,” Nucl. Fusion 52, 122003 (2012). https://doi.org/10.1088/0029-5515/52/12/122003, Google ScholarCrossref
  19. 19. G. Maddison, C. Giroud, B. Alper, G. Arnoux, I. Balboa, M. N. A. Beurskens, A. Boboc, S. Brezinsek, M. Brix, M. Clever, R. Coelho, J. W. Coenen, I. Coffey, P. C. da Silva Aresta Belo, S. Devaux, P. Devynck, T. Eich, R. C. Felton, J. Flanagan, L. Frassinetti, L. Garzotti, M. Groth, S. Jachmich, A. Järvinen, E. Joffrin, M. A. H. Kempenaars, U. Kruezi, K. D. Lawson, M. Lehnen, M. J. Leyland, Y. Liu, P. Lomas, C. G. Lowry, S. Marsen, G. F. Matthews, G. K. McCormick, A. G. Meigs, A. W. Morris, R. Neu, I. Nunes, M. Oberkofler, F. G. Rimini, S. Saarelma, B. Sieglin, A. C. C. Sips, A. Sirinelli, M. F. Stamp, G. J. van Rooij, D. J. Ward, M. Wischmeier, and J. E. T. E. F. D. A. Contributors, “ Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET,” Nucl. Fusion 54, 073016 (2014). https://doi.org/10.1088/0029-5515/54/7/073016, Google ScholarCrossref
  20. 20. J. L. Jauberteau, I. Jauberteau, and J. Aubreton, “ NH3 and NHx<3 radicals synthesis downstream a microwave discharge sustained in an Ar-N2-H2 gas mixture. Study of surface reactive processes and determination of rate constants,” J. Phys. D: Appl. Phys. 35, 665 (2002). https://doi.org/10.1088/0022-3727/35/7/315, Google ScholarCrossref
  21. 21. I. Jauberteau, J. L. Jauberteau, M. N. Séméria, A. Larré, J. Piaguet, and J. Aubreton, “ Plasma nitriding of thin molybdenum layers at low temperature,” Surf. Coat. Technol. 116–119, 222–228 (1999). https://doi.org/10.1016/S0257-8972(99)00117-6, Google ScholarCrossref
  22. 22. M. Sode, T. Schwarz-Selinger, and W. Jacob, “ Quantitative determination of mass-resolved ion densities in H2-Ar inductively coupled radio frequency plasmas,” J. Appl. Phys. 113, 093304 (2013). https://doi.org/10.1063/1.4794165, Google ScholarScitation, ISI
  23. 23. M. Sode, T. Schwarz-Selinger, and W. Jacob, “ Ion chemistry in H2-Ar low temperature plasmas,” J. Appl. Phys. 114, 063302 (2013). https://doi.org/10.1063/1.4817526, Google ScholarScitation, ISI
  24. 24. N. Fox-Lyon and G. S. Oehrlein, “ Isotope effects on plasma species of Ar/H2/D2 plasmas,” J. Vac. Sci. Technol., B 32, 041206 (2014). https://doi.org/10.1116/1.4889858, Google ScholarCrossref
  25. 25. M. Jimenez-Redondo, M. Cueto, J. L. Domenech, I. Tanarro, and V. J. Herrero, “ Ion kinetics in Ar/H2 cold plasmas: the relevance of ArH+,” RSC Adv. 4, 62030–62041 (2014). https://doi.org/10.1039/C4RA13102A, Google ScholarCrossref
  26. 26. R. A. Arakoni, A. N. Bhoj, and M. J. Kushner, “ H2 generation in Ar/NH3 microdischarges,” J. Phys. D: Appl. Phys. 40, 2476 (2007). https://doi.org/10.1088/0022-3727/40/8/010, Google ScholarCrossref
  27. 27. E. Carrasco, V. J. Herrero, and I. Tanarro, “ Time-resolved diagnostics and kinetic modelling of the ignition transient of a H2 + 0.1 N2 square wave modulated hollow cathode discharge,” J. Phys. D: Appl. Phys. 45, 305201 (2012). https://doi.org/10.1088/0022-3727/45/30/305201, Google ScholarCrossref
  28. 28. E. Carrasco, I. Tanarro, V. J. Herrero, and J. Cernicharo, “ Proton transfer chains in cold plasmas of H2 with small amounts of N2. the prevalence of NH4+,” Phys. Chem. Chem. Phys. 15, 1699–1706 (2013). https://doi.org/10.1039/c2cp43438e, Google ScholarCrossref
  29. 29. S. Jang and W. Lee, “ Pressure and input power dependence of Ar/N2H2 inductively coupled plasma systems,” J. Vac. Sci. Technol., A 19, 2335 (2001). https://doi.org/10.1116/1.1385904, Google ScholarCrossref
  30. 30. J. H. van Helden, W. Wagemans, G. Yagci, R. A. B. Zijlmans, D. C. Schram, R. Engeln, G. Lombardi, G. D. Stancu, and J. Röpcke, “ Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas,” J. Appl. Phys. 101, 043305 (2007). https://doi.org/10.1063/1.2645828, Google ScholarScitation
  31. 31. S. J. Kang and V. M. Donnelly, “ Optical absorption and emission spectroscopy studies of ammonia-containing plasmas,” Plasma Sources Sci. Technol. 16, 265 (2007). https://doi.org/10.1088/0963-0252/16/2/008, Google ScholarCrossref
  32. 32. S. Chen, H. Kondo, K. Ishikawa, K. Takeda, M. Sekine, H. Kano, S. Den, and M. Hori, “ Behaviors of absolute densities of N, H, and NH3 at remote region of high-density radical source employing N2–H2 mixture plasmas,” Jpn. J. Appl. Phys., Part 1 50, 01AE03 (2011). https://doi.org/10.7567/JJAP.50.01AE03, Google ScholarCrossref
  33. 33. I. Burlacov, K. Börner, H.-J. Spies, H. Biermann, D. Lopatik, H. Zimmermann, and J. Röpcke, “ In-situ monitoring of plasma enhanced nitriding processes using infrared absorption and mass spectroscopy,” Surf. Coat. Technol. 206, 3955–3960 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.067, Google ScholarCrossref
  34. 34. C. S. Moon, K. Takeda, S. Takashima, M. Sekine, Y. Setsuhara, M. Shiratani, and M. Hori, “ High performance of compact radical monitoring probe in H2/N2 mixture plasma,” J. Vac. Sci. Technol., B 28, L17–L20 (2010). https://doi.org/10.1116/1.3327926, Google ScholarCrossref
  35. 35. S. Touimi, J. L. Jauberteau, I. Jauberteau, and J. Aubreton, “ Plasma chemistry and diagnostic in an Ar-N2-H2 microwave expanding plasma used for nitriding treatments,” J. Phys. D: Appl. Phys. 43, 205203 (2010). https://doi.org/10.1088/0022-3727/43/20/205203, Google ScholarCrossref
  36. 36. S. Peter, R. Pintaske, G. Hecht, and F. Richter, “ Determination of mass and energy distribution of ions in glow discharges,” Surf. Coat. Technol. 59, 97–100 (1993). https://doi.org/10.1016/0257-8972(93)90061-R, Google ScholarCrossref
  37. 37. B. Gordiets, C. M. Ferreira, M. J. Pinheiro, and A. Ricard, “ Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes,” Plasma Sources Sci. Technol. 7, 363 (1998). https://doi.org/10.1088/0963-0252/7/3/015, Google ScholarCrossref
  38. 38. B. Gordiets, C. M. Ferreira, M. J. Pinheiro, and A. Ricard, “ Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: II. Surface processes and densities of N, H, NH3 species,” Plasma Sources Sci. Technol. 7, 379 (1998). https://doi.org/10.1088/0963-0252/7/3/016, Google ScholarCrossref
  39. 39. E. Tatarova, F. M. Dias, B. Gordiets, and C. M. Ferreira, “ Molecular dissociation in N2-H2 microwave discharges,” Plasma Sources Sci. Technol. 14, 19 (2005). https://doi.org/10.1088/0963-0252/14/1/003, Google ScholarCrossref
  40. 40. A. Garscadden and R. Nagpal, “ Non-equilibrium electronic and vibrational kinetics in H2-N2 and H2 discharges,” Plasma Sources Sci. Technol. 4, 268 (1995). https://doi.org/10.1088/0963-0252/4/2/011, Google ScholarCrossref
  41. 41. V. A. Kadetov, “ Diagnostics and modeling of an inductively coupled radio frequency discharge in hydrogen,” Ph.D. thesis ( Ruhr Universität Bochum, 2004). Google Scholar
  42. 42. W. Walcher, “ Über eine Ionenequelle für massenspektroskopische Isotopentrennung,” Z. Phys. 122, 62–85 (1944). https://doi.org/10.1007/BF01336788, Google ScholarCrossref
  43. 43. M. Sode, T. Schwarz-Selinger, W. Jacob, and H. Kersten, “ Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry,” J. Appl. Phys. 116, 193302 (2014). https://doi.org/10.1063/1.4902063, Google ScholarScitation, ISI
  44. 44. M. Sode, T. Schwarz-Selinger, W. Jacob, and H. Kersten, “ Surface loss probability of atomic hydrogen for different electrode cover materials investigated in H2-Ar low-pressure plasmas,” J. Appl. Phys. 116, 013302 (2014). https://doi.org/10.1063/1.4886123, Google ScholarScitation
  45. 45. S. V. Dudin, A. P. Jatskov, and V. I. Farenik, Tekhnol. Konstr. Elektron. Appar. 3, 43 (2002). Google Scholar
  46. 46. P. McNeely, S. Dudin, S. Christ-Koch, and U. Fantz, “ A Langmuir probe system for high power RF-driven negative ion sources on high potential,” Plasma Sources Sci. Technol. 18, 014011 (2009). https://doi.org/10.1088/0963-0252/18/1/014011, Google ScholarCrossref, ISI
  47. 47. H. Singh, J. W. Coburn, and D. B. Graves, “ Appearance potential mass spectrometry: Discrimination of dissociative ionization products,” J. Vac. Sci. Technol., A 18, 299 (2000). https://doi.org/10.1116/1.582183, Google ScholarCrossref
  48. 48. S. Matsuda, H. Shimosato, M. Yumoto, and T. Sakai, “ Detection of nitrogen metastable molecules by using the threshold ionization mass spectrometry,” Electr. Eng. Jpn. 147, 17–24 (2004). https://doi.org/10.1002/eej.10270, Google ScholarCrossref
  49. 49. H. Singh, J. W. Coburn, and D. B. Graves, “ Recombination coefficients of O and N radicals on stainless steel,” J. Appl. Phys. 88, 3748–3755 (2000). https://doi.org/10.1063/1.1289046, Google ScholarScitation, ISI
  50. 50. P. Kae-Nune, J. Perrin, J. Jolly, and J. Guillon, “ Surface recombination probabilities of H on stainless steel, a-Si:H and oxidized silicon determined by threshold ionization mass spectrometry in H2 RF discharges,” Surf. Sci. Lett. 360, L495 (1996). https://doi.org/10.1016/0039-6028(96)00732-7, Google ScholarCrossref
  51. 51. M. Bauer, T. Schwarz-Selinger, W. Jacob, and A. v. Keudell, “ Growth precursor for a–C:H film deposition in pulsed inductively coupled methane plasmas control of the plasma chemistry of a pulsed inductively coupled methane plasma,” J. Appl. Phys. 98, 073302 (2005). https://doi.org/10.1063/1.2061890, Google ScholarScitation
  52. 52. T. Schwarz-Selinger, V. Dose, W. Jacob, and A. von Keudell, “ Quantification of a radical beam source for methyl radicals,” J. Vac. Sci. Technol., A 19, 101 (2001). https://doi.org/10.1116/1.1326939, Google ScholarCrossref
  53. 53. S. Agarwal, B. Hoex, M. C. M. van de Sanden, D. Maroudas, and E. S. Aydil, “ Absolute densities of N and excited N2 in a N2 plasma,” Appl. Phys. Lett. 83, 4918–4920 (2003). https://doi.org/10.1063/1.1630843, Google ScholarScitation
  54. 54. M. Sode, “ Quantitative Beschreibung von Wasserstoff-Stickstoff-Argon-Mischplasmen,” Ph.D. thesis ( Universität Kiel, 2013) (in German). Available at http://d-nb.info/1048558398, Google Scholar
  55. 55. A. Sandu and R. Sanders, see http://people.cs.vt.edu/asandu/Software/Kpp/ for KPP—The Kinetic Preprocessor, Version 2.2.1, 2006. Google Scholar
  56. 56. V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael, “ The kinetic preprocessor KPP–A software environment for solving chemical kinetics,” Comput. Chem. Eng. 26, 1567–1579 (2002). https://doi.org/10.1016/S0098-1354(02)00128-X, Google ScholarCrossref
  57. 57. T. Kimura and H. Kasugai, “ Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model,” J. Appl. Phys. 107, 083308 (2010). https://doi.org/10.1063/1.3345084, Google ScholarScitation, ISI
  58. 58. J.-S. Yoon, M.-Y. Song, J.-M. Han, S. H. Hwang, W.-S. Chang, B. Lee, and Y. Itikawa, “ Cross sections for electron collisions with hydrogen molecules,” J. Phys. Chem. Ref. Data 37, 913–931 (2008). https://doi.org/10.1063/1.2838023, Google ScholarScitation, ISI
  59. 59. M. B. Shah, D. S. Elliott, and H. B. Gilbody, “ Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact,” J. Phys. B: Atom. Mol. Phys. 20, 3501–3514 (1987). https://doi.org/10.1088/0022-3700/20/14/022, Google ScholarCrossref
  60. 60. R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, and R. S. Freund, “ Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method,” Phys. Rev. A 35, 559–577 (1987). https://doi.org/10.1103/PhysRevA.35.559, Google ScholarCrossref
  61. 61. Y. Itikawa, “ Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35, 31–53 (2006). https://doi.org/10.1063/1.1937426, Google ScholarScitation, ISI
  62. 62. Y.-K. Kim and J.-P. Desclaux, “ Ionization of carbon, nitrogen, and oxygen by electron impact,” Phys. Rev. A 66, 012708 (2002). https://doi.org/10.1103/PhysRevA.66.012708, Google ScholarCrossref
  63. 63. V. Tarnovsky, H. Deutsch, and K. Becker, “ Cross-sections for the electron impact ionization of NDx (x =1-3),” Int. J. Mass Spectrom. Ion Processes 167/168, 69–78 (1997). https://doi.org/10.1016/S0168-1176(97)00033-5, Google ScholarCrossref
  64. 64. T. D. Märk, F. Egger, and M. Cheret, “ Ionization of ammonia and deuterated ammonia by electron impact from threshold up to 180 eV,” J. Chem. Phys. 67, 3795–3802 (1977). https://doi.org/10.1063/1.435321, Google ScholarScitation
  65. 65. M. Yousfi and M. D. Benabdessadok, “ Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia,” J. Appl. Phys. 80, 6619–6630 (1996). https://doi.org/10.1063/1.363785, Google ScholarScitation, ISI
  66. 66. V. K. Anicich, “ Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modelling planetary atmospheres, cometary comae, and interstellar clouds,” J. Phys. Chem. Ref. Data 22, 1469–1569 (1993). https://doi.org/10.1063/1.555940, Google ScholarScitation
  67. 67. K. Tao, D. Mao, and J. Hopwood, “ Ionized physical vapor deposition of titanium nitride: A global plasma model,” J. Appl. Phys. 91, 4040–4048 (2002). https://doi.org/10.1063/1.1455139, Google ScholarScitation, ISI
  68. 68. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing ( John Wiley and Sons, Inc., Hoboken, New Jersey, 2005). Google ScholarCrossref
  69. 69. V. A. Godyak, Soviet Radio Frequency Discharge Research ( Delphic Associates, Falls Church, VA, 1986). Google Scholar
  70. 70. A. Bogaerts and R. Gijbels, “ Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge,” Spectrochim. Acta, Part B 57, 1071–1099 (2002). https://doi.org/10.1016/S0584-8547(02)00047-2, Google ScholarCrossref
  71. 71. A. V. Phelps, “ Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 KeV,” J. Phys. Chem. Ref. Data 20, 557 (1991). https://doi.org/10.1063/1.555889, Google ScholarScitation
  72. 72. V. Voitsenya, S. Masuzaki, O. Motojima, and A. Sagara, “ Impact of N2-H2 mixture plasma on carbon-containing film,” Probl. At. Sci. Technol., Ser.: Plasma Phys. 2006, 141–143. Google Scholar
  73. 73. V. Voitsenya, S. Masuzaki, O. Motojima, and A. Sagara, “ Impact of N2-H2 mixture plasma on carbon-containing film” (unpublished 2006). Google Scholar
  74. 74. M. T. Bowers and D. D. Elleman, “ Kinetic analysis of the concurrent ion–molecule reactions in mixtures of argon and nitrogen with H2, D2, and HD utilizing ion-ejection–ion-cyclotron-resonance techniques,” J. Chem. Phys. 51, 4606–4617 (1969). https://doi.org/10.1063/1.1671833, Google ScholarScitation
  75. 75. A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, “ Low pressure hydrogen discharges diluted with argon explored using a global model,” Plasma Sources Sci. Technol. 19, 065008 (2010). https://doi.org/10.1088/0963-0252/19/6/065008, Google ScholarCrossref
  76. 76. T. Kimura and H. Kasugai, “ Experiments and global model of inductively coupled rf Ar/N2 discharges,” J. Appl. Phys. 108, 033305 (2010). https://doi.org/10.1063/1.3468603, Google ScholarScitation, ISI
  77. 77. E. G. Thorsteinsson and J. T. Gudmundsson, “ A global (volume averaged) model of a nitrogen discharge: I. steady state,” Plasma Sources Sci. Technol. 18, 045001 (2009). https://doi.org/10.1088/0963-0252/18/4/045001, Google ScholarCrossref
  78. 78. M. Gerl, “ Modellierung von Teilchendichten in Stickstoff-Niedertemperaturplasmen,” Bachelor thesis ( Technische Universität München, 2011) (in German). Google Scholar
  79. 79. P. J. Chantry, “ A simple formula for diffusion calculations involving wall reflection and low density,” J. Appl. Phys. 62, 1141–1148 (1987). https://doi.org/10.1063/1.339662, Google ScholarScitation
  80. 80. S. Takashima, M. Hori, T. Goto, A. Kono, and K. Yoneda, “ Absolute concentration and loss kinetics of hydrogen atom in methane and hydrogen plasmas,” J. Appl. Phys. 90, 5497–5503 (2001). https://doi.org/10.1063/1.1410327, Google ScholarScitation
  81. 81. J. Jolly and J.-P. Booth, “ Atomic hydrogen densities in capacitively coupled very high-frequency plasmas in H2: Effect of excitation frequency,” J. Appl. Phys. 97, 103305 (2005). https://doi.org/10.1063/1.1900290, Google ScholarScitation
  82. 82. A. Rousseau, G. Cartry, and X. Duten, “ Surface recombination of hydrogen atoms studied by a pulsed plasma excitation technique,” J. Appl. Phys. 89, 2074–2078 (2001). https://doi.org/10.1063/1.1325000, Google ScholarScitation
  83. 83. K. Kutasi and J. Loureiro, “ Role of the wall reactor material on the species density distributions in an N2 O2 post-discharge for plasma sterilization,” J. Phys. D 40, 5612 (2007). https://doi.org/10.1088/0022-3727/40/18/017, Google ScholarCrossref
  84. 84. U. Cvelbar, M. Mozetič, I. Poberaj, D. Babič, and A. Ricard, “ Characterization of hydrogen plasma with a fiber optics catalytic probe,” Thin Solid Films 475, 12–16 (2005). https://doi.org/10.1016/j.tsf.2004.08.047, Google ScholarCrossref
  85. 85. F. Gaboriau, U. Cvelbar, M. Mozetič, A. Erradi, and B. Rouffet, “ Comparison of TALIF and catalytic probes for the determination of nitrogen atom density in a nitrogen plasma afterglow,” J. Phys. D: Appl. Phys. 42, 055204 (2009). https://doi.org/10.1088/0022-3727/42/5/055204, Google ScholarCrossref
  86. 86. A. D. Tserepi and T. A. Miller, “ Two-photon absorption laser-induced fluorescence of H atoms: A probe for heterogeneous processes in hydrogen plasmas,” J. Appl. Phys. 75, 7231–7236 (1994). https://doi.org/10.1063/1.356680, Google ScholarScitation
  87. 87. S. F. Adams and T. A. Miller, “ Surface and volume loss of atomic nitrogen in a parallel plate rf discharge reactor,” Plasma Sources Sci. Technol. 9, 248 (2000). https://doi.org/10.1088/0963-0252/9/3/302, Google ScholarCrossref
  88. 88. M. Osiac, T. Schwarz-Selinger, D. O'Connell, B. Heil, Z. L. Petrovic, M. M. Turner, T. Gans, and U. Czarnetzki, “ Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma,” Plasma Sources Sci. Technol. 16, 355–363 (2007). https://doi.org/10.1088/0963-0252/16/2/019, Google ScholarCrossref
  89. 89. W. Poschenrieder, private communication, 2012. Google Scholar
  90. 90. N. G. Adams, D. Smith, and J. F. Paulson, “ An experimental survey of the reactions of NHn+ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K,” J. Chem. Phys. 72, 288–297 (1980). https://doi.org/10.1063/1.438893, Google ScholarScitation
  91. 91. E. P. L. Hunter and S. G. Lias, “ Evaluated gas phase basicities and proton affinities of molecules: An update,” J. Phys. Chem. Ref. Data 27, 413 (1998). https://doi.org/10.1063/1.556018, Google ScholarScitation, ISI