No Access Submitted: 21 October 2014 Accepted: 05 January 2015 Published Online: 15 January 2015
Appl. Phys. Lett. 106, 022113 (2015); https://doi.org/10.1063/1.4906040
more...View Affiliations
View Contributors
  • E. G. Marin
  • F. G. Ruiz
  • A. Godoy
  • I. M. Tienda-Luna
  • F. Gámiz
The impact of the L-valley population on the transport properties of GaAs cylindrical nanowires (NWs) is analyzed by numerically calculating the electron mobility under the momentum relaxation time approximation. In spite of its low contribution to the electron mobility (even for high electron populations in small NWs), it is demonstrated to have a beneficial effect, since it significantly favours the Γ-valley mobility by screening the higher Γ-valley energy subbands.
This work was supported by the Spanish Government under the Project FIS2011-26005. E. G. Marin also acknowledges the FPU program from the Spanish Ministry of Education and Plan Propio from Universidad de Granada. I. M. Tienda-Luna also acknowledges PYR-2014-25 from CEI-BioTIC.
  1. 1. J. del Álamo, Nature 479, 317 (2011). https://doi.org/10.1038/nature10677, Google ScholarCrossref
  2. 2. S.-H. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, and S. Takagi, IEEE Trans. Electron Devices 61, 1354 (2014). https://doi.org/10.1109/TED.2014.2312546, Google ScholarCrossref
  3. 3. M. V. Fischetti, L. Wang, B. Yu, C. Sachs, P. Asbeck, Y. Taur, and M. Rodwell, IEEE Int. Electron Devices Meet. 2007, 109. Google Scholar
  4. 4. K. Alam, S. Takagi, and M. Takenaka, IEEE Trans. Electron Devices 60, 4213 (2013). https://doi.org/10.1109/TED.2013.2285394, Google ScholarCrossref
  5. 5. R. Kim, T. Rakshit, R. Kotlyar, S. Hasan, and C. Weber, IEEE Electron Device Lett. 32, 746 (2011). https://doi.org/10.1109/LED.2011.2127440, Google ScholarCrossref
  6. 6. M. Luisier, IEEE Electron Device Lett. 32, 1686 (2011). https://doi.org/10.1109/LED.2011.2168377, Google ScholarCrossref
  7. 7. S. Mehrotra, M. Povolotskyi, D. Elias, T. Kubis, J. Law, M. Rodwell, and G. Klimeck, IEEE Electron Device Lett. 34, 1196 (2013). https://doi.org/10.1109/LED.2013.2273072, Google ScholarCrossref
  8. 8. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele, Small 2, 85 (2006). https://doi.org/10.1002/smll.200500181, Google ScholarCrossref, ISI
  9. 9. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002). https://doi.org/10.1038/415617a, Google ScholarCrossref, ISI
  10. 10. S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, and P. Caroff, Nanotechnology 21, 385602 (2010). https://doi.org/10.1088/0957-4484/21/38/385602, Google ScholarCrossref, ISI
  11. 11. F. G. Ruiz, A. Godoy, F. Gámiz, C. Sampedro, and L. Donetti, IEEE Trans. Electron Devices 54, 3369 (2007). https://doi.org/10.1109/TED.2007.909206, Google ScholarCrossref
  12. 12. J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, IEEE Trans. Electron Devices 52, 1589 (2005). https://doi.org/10.1109/TED.2005.850945, Google ScholarCrossref, ISI
  13. 13. Y. Niquet, A. Lherbier, N. Quang, M. Fernández-Serra, X. Blase, and C. Delerue, Phys. Rev. B 73, 165319 (2006). https://doi.org/10.1103/PhysRevB.73.165319, Google ScholarCrossref, ISI
  14. 14. T. A. Rahman, M. Lundstrom, and A. Ghosh, J. Appl. Phys. 97, 053702 (2005). https://doi.org/10.1063/1.1845586, Google ScholarScitation, ISI
  15. 15. S. Jin, M. V. Fischetti, and T. Tang, J. Appl. Phys. 102, 083715 (2007). https://doi.org/10.1063/1.2802586, Google ScholarScitation, ISI
  16. 16. S. Jin, T.-W. Tang, and M. V. Fischetti, IEEE Trans. Electron Devices 55, 727 (2008). https://doi.org/10.1109/TED.2007.913560, Google ScholarCrossref
  17. 17. M. V. Fischetti, IEEE Trans. Electron Devices 38, 634 (1991). https://doi.org/10.1109/16.75176, Google ScholarCrossref, ISI
  18. 18. T. Wang and T. C. T. H. Hsieh, J. Appl. Phys. 74, 426 (1993). https://doi.org/10.1063/1.354127, Google ScholarScitation, ISI
  19. 19. Z. Stanojevic and H. Kosina, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2013), p. 352. https://doi.org/10.1109/SISPAD.2013.6650647, Google ScholarCrossref
  20. 20. S. Jin, S.-M. Hong, W. Choi, K.-H. Lee, and Y. Park, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2013), p. 348. https://doi.org/10.1109/SISPAD.2013.6650646, Google ScholarCrossref
  21. 21. A. Paussa and D. Esseni, J. Appl. Phys. 113, 093702 (2013). https://doi.org/10.1063/1.4793634, Google ScholarScitation
  22. 22. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570, Google ScholarCrossref
  23. 23. D. Greenwood, Proc. Phys. Soc. 71, 585 (1958). https://doi.org/10.1088/0370-1328/71/4/306, Google ScholarCrossref
  24. 24. J. Kim and M. Fischetti, J. Appl. Phys. 108, 013710 (2010). https://doi.org/10.1063/1.3437655, Google ScholarScitation, ISI
  25. 25. P. Toniutti, D. Esseni, and P. Palestri, IEEE Trans. Electron Devices 57, 3074 (2010). https://doi.org/10.1109/TED.2010.2068990, Google ScholarCrossref
  1. © 2015 AIP Publishing LLC.