No Access Submitted: 13 August 2014 Accepted: 07 October 2014 Published Online: 17 October 2014
Journal of Applied Physics 116, 154303 (2014);
more...View Affiliations
Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.
This work was supported in part by Strategic Information and Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Communications and the Core-to-Core Program, A. Advanced Research Networks from the Japan Society for the Promotion of Science.
  1. 1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002)., Google ScholarCrossref
  2. 2. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Phys. Rev. Lett. 89, 186802 (2002)., Google ScholarCrossref
  3. 3. T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, Nano Lett. 4, 1599–1603 (2004)., Google ScholarCrossref
  4. 4. J. R. Zurita-Sánchez and L. Novotny, J. Opt. Soc. Am. B 19, 1355–1362 (2002)., Google ScholarCrossref
  5. 5. C. Pistol, C. Dwyer, and A. R. Lebeck, IEEE Micro 28, 7–18 (2008)., Google ScholarCrossref
  6. 6. T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, and M. Naruse, Appl. Phys. B 103, 537–546 (2011)., Google ScholarCrossref
  7. 7. H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, Anal. Chem. 82, 5511–5517 (2010)., Google ScholarCrossref
  8. 8. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, Phys. Rev. B 86, 125407 (2012)., Google ScholarCrossref
  9. 9. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, Langmuir 29, 7557–7564 (2013)., Google ScholarCrossref
  10. 10. S.-J. Kim, M. Naruse, M. Aono, M. Ohtsu, and M. Hara, Sci. Rep. 3, 2370 (2013)., Google ScholarCrossref
  11. 11. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, Nat. Commun. 4, 1364 (2013)., Google ScholarCrossref
  12. 12. S. Utsunomiya, K. Takata, and Y. Yamamoto, Opt. Express 19, 18091–18108 (2011)., Google ScholarCrossref
  13. 13. K. Wu, J. G. de Abajo, C. Soci, P. P. Shum, and N. I. Zheludev, Light Sci. Appl. 3, e147 (2014)., Google ScholarCrossref
  14. 14. M. Naruse, N. Tate, M. Aono, and M. Ohtsu, Rep. Prog. Phys. 76, 056401 (2013)., Google ScholarCrossref
  15. 15. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys. Rev. B 54, 11548 (1996)., Google ScholarCrossref
  16. 16. S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, Phys. Rev. B 55, 4473 (1997)., Google ScholarCrossref
  17. 17. R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, Appl. Phys. Lett. 84, 4059–4061 (2004)., Google ScholarScitation
  18. 18. N. Daw, J. O'Doherty, P. Dayan, B. Seymour, and R. Dolan, Nature 441, 876–879 (2006)., Google ScholarCrossref
  19. 19. L. Lai, H. Gamal, H. Jiang, and V. Poor, IEEE Trans. Mob. Comput. 10, 239–253 (2011)., Google ScholarCrossref
  20. 20. S.-J. Kim and M. Aono, NOLTA 5, 198–209 (2014)., Google ScholarCrossref
  21. 21. D. Agarwal, B.-C. Chen, and P. Elango, in Proceedings of IEEE International Conference on Data Mining (2009), pp. 1–10. Google Scholar
  22. 22. L. Kocsis and C. Szepesvári, Machine Learning: ECML ( Springer, 2006), Vol. 4212, pp. 282–293. Google Scholar
  23. 23. H. Takahashi, Neurosci. Res. 75, 269–274 (2013)., Google ScholarCrossref
  24. 24. S.-J. Kim, M. Aono, and M. Hara, Biosystems 101, 29–36 (2010)., Google ScholarCrossref
  25. 25. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, Appl. Phys. B 100, 181–187 (2010)., Google ScholarCrossref
  26. 26. M. Naruse, P. Holmström, T. Kawazoe, K. Akahane, N. Yamamoto, L. Thylén, and M. Ohtsu, Appl. Phys. Lett. 100, 241102 (2012)., Google ScholarScitation
  27. 27. T. Komuro, S. Kagami, I. Ishii, and M. Ishikawa, J. Rob. Mechatron. 12, 515–520 (2000). Google ScholarCrossref
  28. 28. M. Naruse, H. Hori, K. Kobayashi, P. Holmström, L. Thylén, and M. Ohtsu, Opt. Express 18, A544–A553 (2010)., Google ScholarCrossref
  29. 29. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J. F. Roch, and S. Huant, Opt. Express 17, 19969 (2009)., Google ScholarCrossref
  1. © 2014 AIP Publishing LLC.