No Access Submitted: 18 February 2014 Accepted: 21 April 2014 Published Online: 07 July 2014
Appl. Phys. Lett. 105, 013101 (2014);
more...View Affiliations
We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm2 V−1 s−1 at room temperature to 49 000 cm2 V−1 s−1 at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.
We thank L. Wang, I. Meric, C. R. Dean, and P. Kim for helpful discussion, and we acknowledge B. Wolfs, J. G. Holstein, H. M. de Roosz, and H. Adema for their technical assistance. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship, the Dutch Foundation for Fundamental Research on Matter (FOM), NWO, NanoNed, the Zernike Institute for Advanced Materials and CNPq, Brazil.
  1. 1. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013)., Google ScholarCrossref
  2. 2. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, J. Phys. Chem. C 112, 17741 (2008)., Google ScholarCrossref
  3. 3. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nano 5, 722 (2010)., Google ScholarCrossref
  4. 4. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011)., Google ScholarCrossref
  5. 5. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, Appl. Phys. Lett. 99, 232104 (2011)., Google ScholarScitation, ISI
  6. 6. R. Jalilian, L. A. Jauregui, G. Lopez, J. Tian, C. Roecker, M. M. Yazdanpanah, R. W. Cohn, I. Jovanovic, and Y. P. Chen, Nanotechnology 22, 295705 (2011)., Google ScholarCrossref
  7. 7. A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Appl. Phys. Lett. 100, 073110 (2012)., Google ScholarScitation, ISI
  8. 8. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342, 614 (2013)., Google ScholarCrossref
  9. 9. P. J. Zomer, M. H. D. Guimarães, N. Tombros, and B. J. van Wees, Phys. Rev. B 86, 161416 (2012)., Google ScholarCrossref
  10. 10. J. Velasco, Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M. Bockrath, C. N. Lau, C. Varma, R. Stillwell, D. Smirnov, F. Zhang, J. Jung, and A. H. MacDonald, Nat. Nano 7, 156 (2012)., Google ScholarCrossref
  11. 11. M. T. Allen, J. Martin, and A. Yacoby, Nat. Commun. 3, 934 (2012)., Google ScholarCrossref
  12. 12. H. J. van Elferen, A. Veligura, E. V. Kurganova, U. Zeitler, J. C. Maan, N. Tombros, I. J. Vera-Marun, and B. J. van Wees, Phys. Rev. B 85, 115408 (2012)., Google ScholarCrossref
  13. 13. A. Veligura, H. J. van Elferen, N. Tombros, J. C. Maan, U. Zeitler, and B. J. van Wees, Phys. Rev. B 85, 155412 (2012)., Google ScholarCrossref
  14. 14. A. S. M. Goossens, S. C. M. Driessen, T. A. Baart, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Nano Lett. 12, 4656 (2012)., Google ScholarCrossref
  15. 15. S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, Nature Mater. 11, 764 (2012)., Google ScholarCrossref
  16. 16. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Nature Mater. 10, 282 (2011)., Google ScholarCrossref
  17. 17. R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, Nano Lett. 11, 2291 (2011)., Google ScholarCrossref
  18. 18.Given the thin h-BN dielectric, quantum capacitance influences the effective capacitance of our gate (Refs. 1919. S. Luryi, Appl. Phys. Lett. 52, 501 (1988). and 2020. J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nano 4, 505 (2009). This causes us to underestimate the actual mobility to some extent, but not by more than 10%.
  19. 19. S. Luryi, Appl. Phys. Lett. 52, 501 (1988)., Google ScholarScitation, ISI
  20. 20. J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nano 4, 505 (2009)., Google ScholarCrossref
  21. 21. M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy, Nat. Phys. 8, 382 (2012)., Google ScholarCrossref
  22. 22. L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Falko, and A. K. Geim, Nature 497, 594 (2013)., Google ScholarCrossref
  23. 23. B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013)., Google ScholarCrossref
  24. 24. C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Nature 497, 598 (2013)., Google ScholarCrossref
  25. 25. R. Pease, Acta Cryst. 5, 356 (1952)., Google ScholarCrossref
  26. 26. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Commun. 146, 351 (2008)., Google ScholarCrossref
  27. 27. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nat. Phys. 7, 701 (2011)., Google ScholarCrossref
  1. © 2014 AIP Publishing LLC.