No Access Submitted: 18 September 2013 Accepted: 25 November 2013 Published Online: 12 December 2013
Appl. Phys. Lett. 103, 241112 (2013); https://doi.org/10.1063/1.4846515
more...View Affiliations
View Contributors
  • D. T. Nguyen
  • C. Baker
  • W. Hease
  • S. Sejil
  • P. Senellart
  • A. Lemaître
  • S. Ducci
  • G. Leo
  • I. Favero
We report on optomechanical GaAs disk resonators with ultrahigh quality factor-frequency product Q×f. Disks standing on a simple pedestal exhibit GHz mechanical breathing modes attaining a Q×f of 1013 measured under vacuum at cryogenic temperature. Clamping losses are found to be the dominant source of dissipation. An improved disk resonator geometry integrating a shield within the pedestal is then proposed, and its working principles and performances are investigated by numerical simulations. For dimensions compatible with fabrication constraints, the clamping-loss-limited Q reaches 107–109 corresponding to Q×f equals 1016–1018. This shielded pedestal approach applies to any heterostructure presenting an acoustic mismatch.
This work was supported by the French ANR through the NOMADE project and by the ERC through the GANOMS project. The authors thank E. Gil-Santos for technical insights.
  1. 1. F. Marquardt and S. M. Girvin, Physics 2, 40 (2009). https://doi.org/10.1103/Physics.2.40 , Google ScholarCrossref
  2. 2. I. Favero and K. Karrai, Nat. Photonics 3(4 ), 201–205 (2009). https://doi.org/10.1038/nphoton.2009.42 , Google ScholarCrossref, ISI
  3. 3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, e-print arXiv:1303.0733 (2013). Google Scholar
  4. 4. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 108, 120801 (2012). https://doi.org/10.1103/PhysRevLett.108.120801 , Google ScholarCrossref
  5. 5. H. Miao, K. Srinivasan, and V. Aksyuk, New J. Phys. 14, 075015 (2012). https://doi.org/10.1088/1367-2630/14/7/075015 , Google ScholarCrossref, ISI
  6. 6. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Nature 475, 359 (2011). https://doi.org/10.1038/nature10261 , Google ScholarCrossref, ISI
  7. 7. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature 478(7367 ), 89–92 (2011). https://doi.org/10.1038/nature10461 , Google ScholarCrossref, ISI
  8. 8. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Phys. Rev. Lett. 105, 263903 (2010). https://doi.org/10.1103/PhysRevLett.105.263903 , Google ScholarCrossref, ISI
  9. 9. C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 99, 151117 (2011). https://doi.org/10.1063/1.3651493 , Google ScholarScitation
  10. 10. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 98, 113108 (2011). https://doi.org/10.1063/1.3563711 , Google ScholarScitation, ISI
  11. 11. D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 100, 242105 (2012). https://doi.org/10.1063/1.4729014 , Google ScholarScitation
  12. 12. C. T.-C. Nguyen, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54, 251–270 (2007). https://doi.org/10.1109/TUFFC.2007.240 , Google ScholarCrossref, ISI
  13. 13. M. Devoret, Lectures at the Collège de France, First Lecture, May 2012. Google Scholar
  14. 14. M. Goryachev, D. L. Creedon, E. N. Ivanov, S. Galliou, R. Bourquin, and M. E. Tobar, Appl. Phys. Lett. 100, 243504 (2012). https://doi.org/10.1063/1.4729292 , Google ScholarScitation, ISI
  15. 15. A. G. Smagin, Prib. Tekh. Eksp. 6, 143 (1974). Google Scholar
  16. 16. J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, Appl. Phys. Lett. 99, 243102 (2011). https://doi.org/10.1063/1.3668092 , Google ScholarScitation, ISI
  17. 17. I. Mahboob and H. Yamaguchi, Nat. Nanotechnol. 3(5 ), 275–279 (2008). https://doi.org/10.1038/nnano.2008.84 , Google ScholarCrossref
  18. 18. G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, Appl. Phys. Lett. 92, 261108 (2008). https://doi.org/10.1063/1.2952512 , Google ScholarScitation
  19. 19. Comsol 4.3 Library. Google Scholar
  20. 20. S. Adachi, J. Appl. Phys. 58, R1–R29 (1985). https://doi.org/10.1063/1.336070 , Google ScholarScitation, ISI
  21. 21. S. Adachi, Properties of Aluminium Gallium Arsenide (IET, 1993). Google Scholar
  22. 22. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Phys. Rev. Lett. 89, 227402 (2002). https://doi.org/10.1103/PhysRevLett.89.227402 , Google ScholarCrossref, ISI
  23. 23. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2(10 ), 627–633 (2008). https://doi.org/10.1038/nphoton.2008.199 , Google ScholarCrossref
  24. 24. X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012). https://doi.org/10.1063/1.4709416 , Google ScholarScitation, ISI
  25. 25. J. Restrepo, C. Ciuti, and I. Favero, e-print arXiv:1307.4282 (2013). Google Scholar
  1. © 2013 AIP Publishing LLC.