ABSTRACT
We report on optomechanical GaAs disk resonators with ultrahigh quality factor-frequency product . Disks standing on a simple pedestal exhibit GHz mechanical breathing modes attaining a of 1013 measured under vacuum at cryogenic temperature. Clamping losses are found to be the dominant source of dissipation. An improved disk resonator geometry integrating a shield within the pedestal is then proposed, and its working principles and performances are investigated by numerical simulations. For dimensions compatible with fabrication constraints, the clamping-loss-limited reaches 107–109 corresponding to equals 1016–1018. This shielded pedestal approach applies to any heterostructure presenting an acoustic mismatch.
This work was supported by the French ANR through the NOMADE project and by the ERC through the GANOMS project. The authors thank E. Gil-Santos for technical insights.
- 1. F. Marquardt and S. M. Girvin, Physics 2, 40 (2009). https://doi.org/10.1103/Physics.2.40 , Google ScholarCrossref
- 2. I. Favero and K. Karrai, Nat. Photonics 3(4 ), 201–205 (2009). https://doi.org/10.1038/nphoton.2009.42 , Google ScholarCrossref, ISI
- 3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, e-print arXiv:1303.0733 (2013). Google Scholar
- 4. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 108, 120801 (2012). https://doi.org/10.1103/PhysRevLett.108.120801 , Google ScholarCrossref
- 5. H. Miao, K. Srinivasan, and V. Aksyuk, New J. Phys. 14, 075015 (2012). https://doi.org/10.1088/1367-2630/14/7/075015 , Google ScholarCrossref, ISI
- 6. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Nature 475, 359 (2011). https://doi.org/10.1038/nature10261 , Google ScholarCrossref, ISI
- 7. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature 478(7367 ), 89–92 (2011). https://doi.org/10.1038/nature10461 , Google ScholarCrossref, ISI
- 8. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Phys. Rev. Lett. 105, 263903 (2010). https://doi.org/10.1103/PhysRevLett.105.263903 , Google ScholarCrossref, ISI
- 9. C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 99, 151117 (2011). https://doi.org/10.1063/1.3651493 , Google ScholarScitation
- 10. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 98, 113108 (2011). https://doi.org/10.1063/1.3563711 , Google ScholarScitation, ISI
- 11. D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 100, 242105 (2012). https://doi.org/10.1063/1.4729014 , Google ScholarScitation
- 12. C. T.-C. Nguyen, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54, 251–270 (2007). https://doi.org/10.1109/TUFFC.2007.240 , Google ScholarCrossref, ISI
- 13. M. Devoret, Lectures at the Collège de France, First Lecture, May 2012. Google Scholar
- 14. M. Goryachev, D. L. Creedon, E. N. Ivanov, S. Galliou, R. Bourquin, and M. E. Tobar, Appl. Phys. Lett. 100, 243504 (2012). https://doi.org/10.1063/1.4729292 , Google ScholarScitation, ISI
- 15. A. G. Smagin, Prib. Tekh. Eksp. 6, 143 (1974). Google Scholar
- 16. J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, Appl. Phys. Lett. 99, 243102 (2011). https://doi.org/10.1063/1.3668092 , Google ScholarScitation, ISI
- 17. I. Mahboob and H. Yamaguchi, Nat. Nanotechnol. 3(5 ), 275–279 (2008). https://doi.org/10.1038/nnano.2008.84 , Google ScholarCrossref
- 18. G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, Appl. Phys. Lett. 92, 261108 (2008). https://doi.org/10.1063/1.2952512 , Google ScholarScitation
- 19. Comsol 4.3 Library. Google Scholar
- 20. S. Adachi, J. Appl. Phys. 58, R1–R29 (1985). https://doi.org/10.1063/1.336070 , Google ScholarScitation, ISI
- 21. S. Adachi, Properties of Aluminium Gallium Arsenide (IET, 1993). Google Scholar
- 22. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Phys. Rev. Lett. 89, 227402 (2002). https://doi.org/10.1103/PhysRevLett.89.227402 , Google ScholarCrossref, ISI
- 23. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2(10 ), 627–633 (2008). https://doi.org/10.1038/nphoton.2008.199 , Google ScholarCrossref
- 24. X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012). https://doi.org/10.1063/1.4709416 , Google ScholarScitation, ISI
- 25. J. Restrepo, C. Ciuti, and I. Favero, e-print arXiv:1307.4282 (2013). Google Scholar
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.