No Access Submitted: 27 September 2013 Accepted: 05 November 2013 Published Online: 21 November 2013
Journal of Applied Physics 114, 193515 (2013);
more...View Affiliations
View Contributors
  • J. Cullen
  • K. Johnston
  • D. Dunker
  • E. McGlynn
  • D. R. Yakovlev
  • M. Bayer
  • M. O. Henry
We report a study of the luminescence due to Hg in ZnO, concentrating on the main zero phonon line (ZPL) at 3.2766(1) eV and its associated phonon sidebands. For a sample implanted with radioactive 192Hg, the ZPL intensity, normalised to that of shallow bound exciton emission, is observed to decrease with an equivalent half-life of 4.5(1) h, very close to the 4.85(20) h half-life of 192Hg. ZnO implanted with stable Hg impurities produces the same luminescence spectrum. Temperature dependent measurements confirm that the zero phonon line is a thermalizing doublet involving one allowed and one largely forbidden transition from excited states separated by 0.91(1) meV to a common ground state. Uniaxial stress measurements show that the allowed transition takes place from an orbitally degenerate excited state to a non-degenerate ground state in a centre of trigonal (C3v) symmetry while the magneto-optical properties are characteristic of electron-hole pair recombination at an isoelectronic defect. The doublet luminescence is assigned to bound exciton recombination involving exchange-split Γ5 and Γ1,2 excited states (using C6v symmetry labels; Γ3 and Γ1,2 using C3v labels) at isoelectronic Hg impurities substituting for Zn in the crystal. The electron and hole g values deduced from the magneto-optical data indicate that this Hg impurity centre in ZnO is hole-attractive.
This work has been supported by the Science Foundation Ireland Research Frontiers Programme under project 08/RFP/PHY1558 and by the European Community as an Integrating Activity under both the “Support of Public and Industrial Research Using Ion Beam Technology—SPIRIT” (Project No. 227012) and “European Nuclear Science and Applications Research—ENSAR” (Project No. 262010) programmes.
  1. 1. R. Ramesh and V. G. Keramidas, Annu. Rev. Mater. Sci. 25, 647 (1995). , Google ScholarCrossref
  2. 2. Z. Yang, C. H. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011). , Google ScholarCrossref, ISI
  3. 3. A. T. Bell, Science 299, 1688 (2003). , Google ScholarCrossref, ISI
  4. 4. A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 33, 269 (2000). , Google ScholarCrossref, ISI
  5. 5. M. Bibes and A. Barthélémy, IEEE Trans. Elec. Devices 54, 1003 (2007). , Google ScholarCrossref
  6. 6. P. J. Dean and D. C. Herbert, in Excitons, edited by K. Cho (Springer-Verlag, Berlin, 1979), Chap. 3. Google Scholar
  7. 7. J. J. Hopfield, D. G. Thomas, and R. T. Lynch, Phys. Rev. Lett. 17, 312 (1966). , Google ScholarCrossref, ISI
  8. 8. T. Agne, M. Dietrich, J. Hamann, S. Lany, H. Wolf, T. Wichert, and ISOLDE Collaboration, Appl. Phys. Lett. 82, 3448 (2003). , Google ScholarScitation, ISI
  9. 9. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004). , Google ScholarCrossref
  10. 10. S. L. Chen, W. M. Chen, and I. A. Buyanova, Phys. Rev. B 86, 235205 (2012). , Google ScholarCrossref
  11. 11. J. Cullen, K. Johnston, E. McGlynn, M. O. Henry, D. Dunker, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 87, 165202 (2013). , Google ScholarCrossref
  12. 12. C. O'Morain, K. G. McGuigan, M. O. Henry, and J. D. Campion, Meas. Sci. Technol. 3, 337 (1992). , Google ScholarCrossref
  13. 13. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschlager, S. Eiserman, and B. K. Meyer, Phys. Rev. B 84, 035313 (2011). , Google ScholarCrossref, ISI
  14. 14. E. McGlynn and M. O. Henry, Phys. Rev. B 76, 184109 (2007). , Google ScholarCrossref
  15. 15. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, 1963). Google Scholar
  16. 16. D. G. Thomas and J. J. Hopfield, Phys. Rev. 128, 2135 (1962). , Google ScholarCrossref, ISI
  17. 17. A. V. Rodina, M. Strassburg, M. Dworzak, U. Haboeck, A. Hoffmann, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Phys. Rev. B 69, 125206 (2004). , Google ScholarCrossref
  18. 18. L. Ding, C. L. Yang, H. T. He, J. N. Wang, Z. K. Tang, B. A. Foreman, F. Y. Jiang, and W. K. Ge, New J. Phys. 15, 033015 (2013). , Google ScholarCrossref
  19. 19. J. L. Birman, Phys. Rev. 114, 1490 (1959). , Google ScholarCrossref, ISI
  20. 20. Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reschikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005). , Google ScholarScitation, ISI
  21. 21. J. J. Hopfield and D. G. Thomas, J. Phys. Chem. Solids 12, 276 (1960). , Google ScholarCrossref
  22. 22. R. E. Dietz, D. G. Thomas, and J. J. Hopfield, J. Appl. Phys. 32, 2282 (1961). , Google ScholarScitation, ISI
  23. 23. M. R. Wagner and A. Hoffmann in Zinc Oxide—From Fundamental Properties Towards Novel Applications, edited by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer-Verlag, Berlin, 2010), Chap. 8. Google Scholar
  24. 24. B. K. Meyer, J. Sann, S. Lautenschlager, M. R. Wagbner, and A. Hoffmann, Phys. Rev. B 76, 184120 (2007). , Google ScholarCrossref, ISI
  25. 25. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002). , Google ScholarCrossref, ISI
  1. © 2013 AIP Publishing LLC.