No Access Submitted: 30 July 2013 Accepted: 29 October 2013 Published Online: 14 November 2013
Journal of Applied Physics 114, 184311 (2013); https://doi.org/10.1063/1.4830026
more...View AffiliationsView Contributors
  • A. Zelenina
  • S. A. Dyakov
  • D. Hiller
  • S. Gutsch
  • V. Trouillet
  • M. Bruns
  • S. Mirabella
  • P. Löper
  • L. López-Conesa
  • J. López-Vidrier
  • S. Estradé
  • F. Peiró
  • B. Garrido
  • J. Bläsing
  • A. Krost
  • D. M. Zhigunov
  • M. Zacharias
Superlattices of Si3N4 and Si-rich silicon nitride thin layers with varying thickness were prepared by plasma enhanced chemical vapor deposition. After high temperature annealing, Si nanocrystals were formed in the former Si-rich nitride layers. The control of the Si quantum dots size via the SiNx layer thickness was confirmed by transmission electron microscopy. The size of the nanocrystals was well in agreement with the former thickness of the respective Si-rich silicon nitride layers. In addition X-ray diffraction evidenced that the Si quantum dots are crystalline whereas the Si3N4 matrix remains amorphous even after annealing at 1200 °C. Despite the proven Si nanocrystals formation with controlled sizes, the photoluminescence was 2 orders of magnitude weaker than for Si nanocrystals in SiO2 matrix. Also, a systematic peak shift was not found. The SiNx/Si3N4 superlattices showed photoluminescence peak positions in the range of 540–660 nm (2.3–1.9 eV), thus quite similar to the bulk Si3N4 film having peak position at 577 nm (2.15 eV). These rather weak shifts and scattering around the position observed for stoichiometric Si3N4 are not in agreement with quantum confinement theory. Therefore theoretical calculations coupled with the experimental results of different barrier thicknesses were performed. As a result the commonly observed photoluminescence red shift, which was previously often attributed to quantum-confinement effect for silicon nanocrystals, was well described by the interference effect of Si3N4 surrounding matrix luminescence.
This work was financially supported by the EU-project NASCEnT (FP7-245977) and by the German Research Foundation (Grant No. ZA191/27-1). A.Z. acknowledges funding by KleE. This research was carried out with the support of the Karlsruhe Nano Micro Facility (KNMF), a Helmholtz Research Infrastructure at KIT. The EFTEM facilities of the CCiTUB are also acknowledged, and EFTEM experiments were financed by the national Spanish CSD2009-00013 and MAT2010-16407 research projects. D.Z. acknowledges RFBR (Grant No. 12-02-31262) for partial financial support.
  1. 1. M. A. Green, Prog. Photovoltaics 9, 123 (2001). https://doi.org/10.1002/pip.360 , Google ScholarCrossref
  2. 2. T. Maeda, E. Suzuki, I. Sakata, M. Yamanaka, and K. Ishii, Nanotechnology 10, 127 (1999). https://doi.org/10.1088/0957-4484/10/2/304 , Google ScholarCrossref, ISI
  3. 3. M. Molinari, H. Rinnert, and M. Vergnat, J. Appl. Phys. 101, 123532 (2007). https://doi.org/10.1063/1.2749283 , Google ScholarScitation
  4. 4. Y.-H. So, S. Huang, G. Conibeer, and M. A. Green, Thin Solid Films 519, 5408 (2011). https://doi.org/10.1016/j.tsf.2011.02.060 , Google ScholarCrossref
  5. 5. T.-W. Kim, C.-H. Cho, B.-H. Kim, and S.-J. Park, Appl. Phys. Lett. 88, 123102 (2006). https://doi.org/10.1063/1.2187434 , Google ScholarScitation
  6. 6. A. Yurtsever, M. Weyland, and D. A. Muller, Appl. Phys. Lett. 89, 151920 (2006). https://doi.org/10.1063/1.2360906 , Google ScholarScitation, ISI
  7. 7. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blaesing, Appl. Phys. Lett. 80, 661 (2002). https://doi.org/10.1063/1.1433906 , Google ScholarScitation, ISI
  8. 8. I. Perez-Wurfl, L. Ma, D. Lin, X. Hao, M. A. Green, and G. Conibeer, Sol. Energy Mater. Sol. Cells 100, 65 (2012). https://doi.org/10.1016/j.solmat.2011.02.029 , Google ScholarCrossref
  9. 9. C.-W. Jiang and M. A. Green, J. Appl. Phys. 99, 114902 (2006). https://doi.org/10.1063/1.2203394 , Google ScholarScitation, ISI
  10. 10. T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, Appl. Phys. Lett. 85, 5355 (2004). https://doi.org/10.1063/1.1814429 , Google ScholarScitation, ISI
  11. 11. P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, and A. Olsen, Phys. Rev. B 85, 085315 (2012). https://doi.org/10.1103/PhysRevB.85.085315 , Google ScholarCrossref, ISI
  12. 12. Y.-H. So, A. Gentle, S. Huang, G. Conibeer, and M. A. Green, J. Appl. Phys. 109, 064302 (2011). https://doi.org/10.1063/1.3561439 , Google ScholarScitation, ISI
  13. 13. J. Kistner, X. Chen, Y. Weng, H. P. Strunk, M. B. Schubert, and J. H. Werner, J. Appl. Phys. 110, 023520 (2011). https://doi.org/10.1063/1.3607975 , Google ScholarScitation
  14. 14. M. Blech, A. Laades, C. Ronning, B. Schröter, C. Borschel, D. Rzesanke, and A. Lawerenz, in 24th EU-PVSEC (2009). Google Scholar
  15. 15. T. Müller, K.-H. Heinig, and W. Möller, Appl. Phys. Lett. 81, 3049 (2002). https://doi.org/10.1063/1.1512952 , Google ScholarScitation, ISI
  16. 16. T. Makino, J. Electrochem. Soc. 130, 450 (1983). https://doi.org/10.1149/1.2119729 , Google ScholarCrossref
  17. 17. W. A. P. Claassen, W. G. J. N. Valkenburg, F. H. P. M. Habraken, and Y. Tamminga, J. Electrochem. Soc. 130, 2419 (1983). https://doi.org/10.1149/1.2119600 , Google ScholarCrossref, ISI
  18. 18. M. Zacharias and P. Streitenberger, Phys. Rew. B 62, 8391 (2000). https://doi.org/10.1103/PhysRevB.62.8391 , Google ScholarCrossref
  19. 19. M. Molinari, H. Rinnert, and M. Vergnat, Appl. Phys. Lett. 77, 3499 (2000). https://doi.org/10.1063/1.1329163 , Google ScholarScitation, ISI
  20. 20. G. Scardera, T. Puzzer, I. Perez-Wurfl, and G. Conibeer, J. Cryst. Growth 310, 3680 (2008). https://doi.org/10.1016/j.jcrysgro.2008.05.018 , Google ScholarCrossref
  21. 21. G. Scardera, E. Bellet-Amalric, D. Bellet, T. Puzzer, E. Pink, and G. Conibeer, J. Cryst. Growth 310, 3685 (2008). https://doi.org/10.1016/j.jcrysgro.2008.05.019 , Google ScholarCrossref
  22. 22. A. M. Hartel, D. Hiller, S. Gutsch, P. Löper, S. Estradé, F. Peiró, B. Garrido, and M. Zacharias, Thin Solid Films 520, 121 (2011). https://doi.org/10.1016/j.tsf.2011.06.084 , Google ScholarCrossref, ISI
  23. 23. G. Scardera, Ph.D. thesis, UNSW Sydney, Australia, 2008. Google Scholar
  24. 24. F. Delachat, M. Carrada, G. Ferblantier, J.-J. Grob, A. Slaoui, and H. Rinnert, Nanotechnology 20, 275608 (2009). https://doi.org/10.1088/0957-4484/20/27/275608 , Google ScholarCrossref
  25. 25. M.-S. Yang, K.-S. Cho, J.-H. Jhe, S.-Y. Seo, J. H. Shin, K. J. Kim, and D. W. Moon, Appl. Phys. Lett. 85, 3408 (2004). https://doi.org/10.1063/1.1787599 , Google ScholarScitation, ISI
  26. 26. D. König, J. Rudd, M. A. Green, and G. Conibeer, Phys. Rev. B 78, 035339 (2008). https://doi.org/10.1103/PhysRevB.78.035339 , Google ScholarCrossref
  27. 27. D. Hiller, S. Goetze, F. Munnik, M. Jivanescu, J. W. Gerlach, J. Vogt, E. Pippel, N. Zakharov, A. Stesmans, and M. Zacharias, Phys. Rev. B 82, 195401 (2010). https://doi.org/10.1103/PhysRevB.82.195401 , Google ScholarCrossref, ISI
  28. 28. B. S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, and D. Muller, Nano. Res. Lett. 6, 178 (2011). https://doi.org/10.1186/1556-276X-6-178 , Google ScholarCrossref
  29. 29. L. B. Ma, R. Song, Y. M. Miao, C. R. Li, Y. Q. Wang, and Z. X. Cao, Appl. Phys. Lett. 88, 093102 (2006). https://doi.org/10.1063/1.2179613 , Google ScholarScitation, ISI
  30. 30. V. Yu. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, Appl. Phys. Lett. 84, 2512 (2004). https://doi.org/10.1063/1.1690465 , Google ScholarScitation
  31. 31. S. A. Dyakov, D. M. Zhigunov, A. Hartel, M. Zacharias, T. S. Perova, and V. Yu. Timoshenko, Appl. Phys. Lett. 100, 061908 (2012). https://doi.org/10.1063/1.3682537 , Google ScholarScitation, ISI
  32. 32. A. M. Hartel, S. Gutsch, D. Hiller, C. Kübel, N. Zakharov, P. Werner, and M. Zacharias, Appl. Phys. Lett. 101, 193103 (2012). https://doi.org/10.1063/1.4766284 , Google ScholarScitation
  33. 33. M. Schnabel, P. Löper, M. Canino, S. A. Dyakov, M. Allegrezza, M. Bellettato, J. López-Vidrier, S. Hernández, C. Summonte, B. Garrido, P. R. Wilshaw, and S. Janz, Solid State Phenom. 205, 480 (2014). Google Scholar
  34. 34. S. A. Dyakov, T. S. Perova, C. Q. Miao, Y.-H. Xie, S. A. Cherevkov, and A. V. Baranov, J. Raman Spectrosc. 44, 803 (2013). https://doi.org/10.1002/jrs.4294 , Google ScholarCrossref
  35. 35. E. D. Palik, Handbook of Optical Constants of Solids, 1, 575 (1985). Google Scholar
  36. 36. See supplementary material at http://dx.doi.org/10.1063/1.4830026 for the detailed information of the optical constants and layer thicknesses used in calculations. Google Scholar
  37. 37. S. Hayashi and K. Yamamoto, J. Lumin. 70, 352 (1996). https://doi.org/10.1016/0022-2313(96)00070-1 , Google ScholarCrossref, ISI
  38. 38. J. Bauer, Phys. Status Solidi A 39, 411 (1977). https://doi.org/10.1002/pssa.2210390205 , Google ScholarCrossref
  39. 39. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 6534 (1995). https://doi.org/10.1063/1.359062 , Google ScholarScitation, ISI
  40. 40. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, Appl. Phys. Lett. 88, 183103 (2006). https://doi.org/10.1063/1.2191956 , Google ScholarScitation, ISI
  41. 41. D. Hiller, A. Zelenina, S. Gutsch, S. Dyakov, M. Kořínek, F. Trojánek, P. Malý, M. Schnabel, C. Weiss, and M. Zacharias, “Absence of quantum confinement effects in the photoluminescence of Si3N4–embedded Si nanocrystals” (to be published). Google Scholar
  1. © 2013 AIP Publishing LLC.