ABSTRACT
Quantum charge pumping, the quantum coherent generation of a dc current at zero bias through time-dependent potentials, provides outstanding opportunities for metrology and the development of nanodevices. The long electronic coherence times and high quality of the crystal structure of graphene may provide suitable building blocks for such quantum pumps. Here, we focus in adiabatic quantum pumping through graphene nanoribbons in the Fabry-Pérot regime highlighting the crucial role of defects by using atomistic simulations. We show that even a single defect added to the pristine structure may produce a two orders of magnitude increase in the pumped charge.
We acknowledge the support from SeCyT-UNC, CONICET, and ANPCyT through Project No. PICT-PRH 61. We thank P. Orellana, L. Rosales, and C. Nuñez for useful discussions.
- 1. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008). https://doi.org/10.1103/PhysRevLett.101.096802 , Google ScholarCrossref, ISI
- 2. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011). https://doi.org/10.1021/nl200758b , Google ScholarCrossref, ISI
- 3. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004). https://doi.org/10.1103/PhysRevLett.92.106804 , Google ScholarCrossref
- 4. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007). https://doi.org/10.1126/science.1144359 , Google ScholarCrossref, ISI
- 5. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Nature 411, 665 (2001). https://doi.org/10.1038/35079517 , Google ScholarCrossref
- 6. Y. Wu, V. Perebeinos, Y.-M. Lin, T. Low, F. Xia, and P. Avouris, Nano Lett. 12, 1417 (2012). https://doi.org/10.1021/nl204088b , Google ScholarCrossref
- 7. M. Oksanen, A. Uppstu, A. Laitinen, D. J. Cox, M. Craciun, S. Russo, A. Harju, and P. Hakonen, “ Single- and multi-mode Fabry-Pérot interference in suspended graphene,” e-print arXiv:1306.1212 [cond-mat.mes-hall], (unpublished). Google Scholar
- 8. A. L. Grushina, Dong -Keun Ki, and A. F. Morpurgo, Appl. Phys. Lett. 102, 223102 (2013). https://doi.org/10.1063/1.4807888 , Google ScholarScitation
- 9. P. Rickhaus, R. Maurand, M. Liu, M. Weiss, K. Richter, and C. Schönenberger, Nat. Commun. 4, 2342 (2013) https://doi.org/10.1038/ncomms3342. Google ScholarCrossref
- 10. C. Gómez-Navarro, P. de Pablo, B. Biel, F. Garcia-Vidal, A. Rubio, F. Flores, and J. Gómez-Herrero, Nature Mater. 4, 534 (2005). https://doi.org/10.1038/nmat1414 , Google ScholarCrossref
- 11. A. V. Krasheninnikov and F. Banhart, Nature Mater. 6, 723 (2007). https://doi.org/10.1038/nmat1996 , Google ScholarCrossref, ISI
- 12. S. Latil, S. Roche, D. Mayou, and J. C. Charlier, Phys. Rev. Lett. 92, 256805 (2004). https://doi.org/10.1103/PhysRevLett.92.256805 , Google ScholarCrossref
- 13. R. Avriller, S. Latil, F. M. C. Triozon, X. Blase, and S. Roche, Phys. Rev. B 74, 121406 (2006). https://doi.org/10.1103/PhysRevB.74.121406 , Google ScholarCrossref
- 14. A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche, Phys. Rev. Lett. 100, 036803 (2008). https://doi.org/10.1103/PhysRevLett.100.036803 , Google ScholarCrossref, ISI
- 15. M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macas, A. L. Elías, E. Munoz-Sandoval, A. G. Cano-Márquez, J.-C. Charlier, and H. Terrones, Nanotoday 5, 351 (2010). https://doi.org/10.1016/j.nantod.2010.06.010 , Google ScholarCrossref
- 16. T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009). https://doi.org/10.1103/PhysRevB.79.081406 , Google ScholarCrossref
- 17. H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres, Appl. Phys. Lett. 98, 232103 (2011). https://doi.org/10.1063/1.3597412 , Google ScholarScitation
- 18. H. L. Calvo, P. M. Perez-Piskunow, S. Roche, and L. E. F. Foa Torres, Appl. Phys. Lett. 101, 253506 (2012). https://doi.org/10.1063/1.4772496 , Google ScholarScitation
- 19. C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and S. D. Ganichev, Nat. Nanotechnol. 8, 104 (2013). https://doi.org/10.1038/nnano.2012.231 , Google ScholarCrossref
- 20. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, Nat. Nanotechnol. 8, 417 (2013). https://doi.org/10.1038/nnano.2013.73 , Google ScholarCrossref
- 21. D. J. Thouless, Phys. Rev. B 27, 6083 (1983). https://doi.org/10.1103/PhysRevB.27.6083 , Google ScholarCrossref
- 22. B. L. Altshuler and L. I. Glazman, Science 283, 1864 (1999). https://doi.org/10.1126/science.283.5409.1864 , Google ScholarCrossref
- 23. M. Büttiker and M. Moskalets, in Mathematical Physics of Quantum Mechanics, Lecture Notes in Physics, Vol. 690, edited by J. Asch and A. Joye (Springer Berlin/Heidelberg, 2006), pp. 33–44. Google ScholarCrossref
- 24. E. Prada, P. San-Jose, and H. Schomerus, Phys. Rev. B 80, 245414 (2009). https://doi.org/10.1103/PhysRevB.80.245414 , Google ScholarCrossref
- 25. R. Zhu and H. Chen, Appl. Phys. Lett. 95, 122111 (2009). https://doi.org/10.1063/1.3236785 , Google ScholarScitation
- 26. E. Grichuk and E. Manykin, EPL 92, 47010 (2010). https://doi.org/10.1209/0295-5075/92/47010 , Google ScholarCrossref
- 27. M. Alos-Palop and M. Blaauboer, Phys. Rev. B 84, 073402 (2011). https://doi.org/10.1103/PhysRevB.84.073402 , Google ScholarCrossref
- 28. C. Perroni, A. Nocera, and V. Cataudella, “ Single-parameter adiabatic charge pumping in carbon nanotube resonators,” e-print arXiv:1306.2468 (unpublished). Google Scholar
- 29. L. E. F. Foa Torres, H. L. Calvo, C. G. Rocha, and G. Cuniberti, Appl. Phys. Lett. 99, 092102 (2011). https://doi.org/10.1063/1.3630025 , Google ScholarScitation, ISI
- 30. P. San-Jose, E. Prada, S. Kohler, and H. Schomerus, Phys. Rev. B 84, 155408 (2011). https://doi.org/10.1103/PhysRevB.84.155408 , Google ScholarCrossref
- 31. Y. Zhou and M. W. Wu, Phys. Rev. B 86, 085406 (2012). https://doi.org/10.1103/PhysRevB.86.085406 , Google ScholarCrossref
- 32. P. W. Brouwer, Phys. Rev. B 58, R10135 (1998). https://doi.org/10.1103/PhysRevB.58.R10135 , Google ScholarCrossref
- 33. J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007). https://doi.org/10.1103/RevModPhys.79.677 , Google ScholarCrossref, ISI
- 34. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007). https://doi.org/10.1103/RevModPhys.79.469 , Google ScholarCrossref
- 35. The parameter controlling the transition from coherent, almost ballistic, transport to a sequential regime dominated by the charging energy is the coupling to the leads, see, for example, Refs. 36 and 37. Google Scholar
- 36. B. Babic and C. Schönenberger, Phys. Rev. B 70, 195408 (2004). https://doi.org/10.1103/PhysRevB.70.195408 , Google ScholarCrossref
- 37. K. Grove-Rasmussen, H. I. Jorgensen, and P. E. Lindelof, Physica E 40, 98 (2007) https://doi.org/10.1016/j.physe.2007.05.015. Google ScholarCrossref
- 38. H. Matsumura and T. Ando, J. Phys. Soc. Jpn. 70, 2657 (2001). https://doi.org/10.1143/JPSJ.70.2657 , Google ScholarCrossref
- 39. F. Romeo, R. Citro, and A. Di Bartolomeo, Phys. Rev. B 84, 153408 (2011). https://doi.org/10.1103/PhysRevB.84.153408 , Google ScholarCrossref
- 40. N. Nemec, D. Tománek, and G. Cuniberti, Phys. Rev. B 77, 125420 (2008). https://doi.org/10.1103/PhysRevB.77.125420 , Google ScholarCrossref
- 41.
C. G. Rocha, L. E. F. Foa Torres, and G. Cuniberti, Phys. Rev. B 81, 115435 (2010); https://doi.org/10.1103/PhysRevB.81.115435 , Google ScholarCrossref
L. E. F. Foa Torres and G. Cuniberti, Appl. Phys. Lett. 94, 222103 (2009). https://doi.org/10.1063/1.3147865 , , Google ScholarScitation - 42. P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, L. E. F. Foa Torres, “ Unveiling laser-induced chiral edge states in graphene,” e-print arXiv:1308.4362 (unpublished). Google Scholar
- 43.
T. Low, Y. Jiang, M. Katsnelson, F. Guinea, Nano Lett. 12, 850 (2012); https://doi.org/10.1021/nl2038985 , Google ScholarCrossref
Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, F. Guinea, Phys. Rev. Lett. 110, 046601 (2013). https://doi.org/10.1103/PhysRevLett.110.046601 , , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.