No Access Submitted: 30 July 2013 Accepted: 29 August 2013 Published Online: 19 September 2013
Appl. Phys. Lett. 103, 123508 (2013); https://doi.org/10.1063/1.4821262
Quantum charge pumping, the quantum coherent generation of a dc current at zero bias through time-dependent potentials, provides outstanding opportunities for metrology and the development of nanodevices. The long electronic coherence times and high quality of the crystal structure of graphene may provide suitable building blocks for such quantum pumps. Here, we focus in adiabatic quantum pumping through graphene nanoribbons in the Fabry-Pérot regime highlighting the crucial role of defects by using atomistic simulations. We show that even a single defect added to the pristine structure may produce a two orders of magnitude increase in the pumped charge.
We acknowledge the support from SeCyT-UNC, CONICET, and ANPCyT through Project No. PICT-PRH 61. We thank P. Orellana, L. Rosales, and C. Nuñez for useful discussions.
  1. 1. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008). https://doi.org/10.1103/PhysRevLett.101.096802 , Google ScholarCrossref, ISI
  2. 2. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011). https://doi.org/10.1021/nl200758b , Google ScholarCrossref, ISI
  3. 3. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004). https://doi.org/10.1103/PhysRevLett.92.106804 , Google ScholarCrossref
  4. 4. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007). https://doi.org/10.1126/science.1144359 , Google ScholarCrossref, ISI
  5. 5. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Nature 411, 665 (2001). https://doi.org/10.1038/35079517 , Google ScholarCrossref
  6. 6. Y. Wu, V. Perebeinos, Y.-M. Lin, T. Low, F. Xia, and P. Avouris, Nano Lett. 12, 1417 (2012). https://doi.org/10.1021/nl204088b , Google ScholarCrossref
  7. 7. M. Oksanen, A. Uppstu, A. Laitinen, D. J. Cox, M. Craciun, S. Russo, A. Harju, and P. Hakonen, “ Single- and multi-mode Fabry-Pérot interference in suspended graphene,” e-print arXiv:1306.1212 [cond-mat.mes-hall], (unpublished). Google Scholar
  8. 8. A. L. Grushina, Dong -Keun Ki, and A. F. Morpurgo, Appl. Phys. Lett. 102, 223102 (2013). https://doi.org/10.1063/1.4807888 , Google ScholarScitation
  9. 9. P. Rickhaus, R. Maurand, M. Liu, M. Weiss, K. Richter, and C. Schönenberger, Nat. Commun. 4, 2342 (2013) https://doi.org/10.1038/ncomms3342. Google ScholarCrossref
  10. 10. C. Gómez-Navarro, P. de Pablo, B. Biel, F. Garcia-Vidal, A. Rubio, F. Flores, and J. Gómez-Herrero, Nature Mater. 4, 534 (2005). https://doi.org/10.1038/nmat1414 , Google ScholarCrossref
  11. 11. A. V. Krasheninnikov and F. Banhart, Nature Mater. 6, 723 (2007). https://doi.org/10.1038/nmat1996 , Google ScholarCrossref, ISI
  12. 12. S. Latil, S. Roche, D. Mayou, and J. C. Charlier, Phys. Rev. Lett. 92, 256805 (2004). https://doi.org/10.1103/PhysRevLett.92.256805 , Google ScholarCrossref
  13. 13. R. Avriller, S. Latil, F. M. C. Triozon, X. Blase, and S. Roche, Phys. Rev. B 74, 121406 (2006). https://doi.org/10.1103/PhysRevB.74.121406 , Google ScholarCrossref
  14. 14. A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche, Phys. Rev. Lett. 100, 036803 (2008). https://doi.org/10.1103/PhysRevLett.100.036803 , Google ScholarCrossref, ISI
  15. 15. M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macas, A. L. Elías, E. Munoz-Sandoval, A. G. Cano-Márquez, J.-C. Charlier, and H. Terrones, Nanotoday 5, 351 (2010). https://doi.org/10.1016/j.nantod.2010.06.010 , Google ScholarCrossref
  16. 16. T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009). https://doi.org/10.1103/PhysRevB.79.081406 , Google ScholarCrossref
  17. 17. H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres, Appl. Phys. Lett. 98, 232103 (2011). https://doi.org/10.1063/1.3597412 , Google ScholarScitation
  18. 18. H. L. Calvo, P. M. Perez-Piskunow, S. Roche, and L. E. F. Foa Torres, Appl. Phys. Lett. 101, 253506 (2012). https://doi.org/10.1063/1.4772496 , Google ScholarScitation
  19. 19. C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and S. D. Ganichev, Nat. Nanotechnol. 8, 104 (2013). https://doi.org/10.1038/nnano.2012.231 , Google ScholarCrossref
  20. 20. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, Nat. Nanotechnol. 8, 417 (2013). https://doi.org/10.1038/nnano.2013.73 , Google ScholarCrossref
  21. 21. D. J. Thouless, Phys. Rev. B 27, 6083 (1983). https://doi.org/10.1103/PhysRevB.27.6083 , Google ScholarCrossref
  22. 22. B. L. Altshuler and L. I. Glazman, Science 283, 1864 (1999). https://doi.org/10.1126/science.283.5409.1864 , Google ScholarCrossref
  23. 23. M. Büttiker and M. Moskalets, in Mathematical Physics of Quantum Mechanics, Lecture Notes in Physics, Vol. 690, edited by J. Asch and A. Joye (Springer Berlin/Heidelberg, 2006), pp. 33–44. Google ScholarCrossref
  24. 24. E. Prada, P. San-Jose, and H. Schomerus, Phys. Rev. B 80, 245414 (2009). https://doi.org/10.1103/PhysRevB.80.245414 , Google ScholarCrossref
  25. 25. R. Zhu and H. Chen, Appl. Phys. Lett. 95, 122111 (2009). https://doi.org/10.1063/1.3236785 , Google ScholarScitation
  26. 26. E. Grichuk and E. Manykin, EPL 92, 47010 (2010). https://doi.org/10.1209/0295-5075/92/47010 , Google ScholarCrossref
  27. 27. M. Alos-Palop and M. Blaauboer, Phys. Rev. B 84, 073402 (2011). https://doi.org/10.1103/PhysRevB.84.073402 , Google ScholarCrossref
  28. 28. C. Perroni, A. Nocera, and V. Cataudella, “ Single-parameter adiabatic charge pumping in carbon nanotube resonators,” e-print arXiv:1306.2468 (unpublished). Google Scholar
  29. 29. L. E. F. Foa Torres, H. L. Calvo, C. G. Rocha, and G. Cuniberti, Appl. Phys. Lett. 99, 092102 (2011). https://doi.org/10.1063/1.3630025 , Google ScholarScitation, ISI
  30. 30. P. San-Jose, E. Prada, S. Kohler, and H. Schomerus, Phys. Rev. B 84, 155408 (2011). https://doi.org/10.1103/PhysRevB.84.155408 , Google ScholarCrossref
  31. 31. Y. Zhou and M. W. Wu, Phys. Rev. B 86, 085406 (2012). https://doi.org/10.1103/PhysRevB.86.085406 , Google ScholarCrossref
  32. 32. P. W. Brouwer, Phys. Rev. B 58, R10135 (1998). https://doi.org/10.1103/PhysRevB.58.R10135 , Google ScholarCrossref
  33. 33. J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007). https://doi.org/10.1103/RevModPhys.79.677 , Google ScholarCrossref, ISI
  34. 34. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007). https://doi.org/10.1103/RevModPhys.79.469 , Google ScholarCrossref
  35. 35. The parameter controlling the transition from coherent, almost ballistic, transport to a sequential regime dominated by the charging energy is the coupling to the leads, see, for example, Refs. 36 and 37. Google Scholar
  36. 36. B. Babic and C. Schönenberger, Phys. Rev. B 70, 195408 (2004). https://doi.org/10.1103/PhysRevB.70.195408 , Google ScholarCrossref
  37. 37. K. Grove-Rasmussen, H. I. Jorgensen, and P. E. Lindelof, Physica E 40, 98 (2007) https://doi.org/10.1016/j.physe.2007.05.015. Google ScholarCrossref
  38. 38. H. Matsumura and T. Ando, J. Phys. Soc. Jpn. 70, 2657 (2001). https://doi.org/10.1143/JPSJ.70.2657 , Google ScholarCrossref
  39. 39. F. Romeo, R. Citro, and A. Di Bartolomeo, Phys. Rev. B 84, 153408 (2011). https://doi.org/10.1103/PhysRevB.84.153408 , Google ScholarCrossref
  40. 40. N. Nemec, D. Tománek, and G. Cuniberti, Phys. Rev. B 77, 125420 (2008). https://doi.org/10.1103/PhysRevB.77.125420 , Google ScholarCrossref
  41. 41. C. G. Rocha, L. E. F. Foa Torres, and G. Cuniberti, Phys. Rev. B 81, 115435 (2010); https://doi.org/10.1103/PhysRevB.81.115435 , Google ScholarCrossref
    L. E. F. Foa Torres and G. Cuniberti, Appl. Phys. Lett. 94, 222103 (2009). https://doi.org/10.1063/1.3147865 , , Google ScholarScitation
  42. 42. P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, L. E. F. Foa Torres, “ Unveiling laser-induced chiral edge states in graphene,” e-print arXiv:1308.4362 (unpublished). Google Scholar
  43. 43. T. Low, Y. Jiang, M. Katsnelson, F. Guinea, Nano Lett. 12, 850 (2012); https://doi.org/10.1021/nl2038985 , Google ScholarCrossref
    Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, F. Guinea, Phys. Rev. Lett. 110, 046601 (2013). https://doi.org/10.1103/PhysRevLett.110.046601 , , Google ScholarCrossref
  1. © 2013 AIP Publishing LLC.